M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
June, 2021

MIMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Check whether or not the matrices $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$ and $\left[\begin{array}{rrr}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -12 & 7\end{array}\right]$ are similar. 2
(b) Obtain the spectral decomposition of the matrix $\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$. Hence obtain the square root of this matrix.
2. (a) Obtain a unitary matrix whose first column

$$
\text { is } \frac{1}{\sqrt{3}}\left[\begin{array}{r}
i \\
-i \\
1
\end{array}\right] \text {. }
$$

(b) Write all possible Jordan canonical forms for a 5×5 matrix whose only distinct eigenvalues are 1 and 2 , the geometric multiplicity of 1 is two and the minimal polynomial is of degree 3 .
3. (a) Find the equation of the line that best fits the points $(2,0),(1,1),(2,-2)$.
(b) Solve the following system of differential equations :

$$
\begin{aligned}
& \frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}=\mathrm{A} y(\mathrm{t}), \text { with } \mathrm{y}(0)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and } \\
& \mathrm{A}=\left[\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

4. Obtain the singular value decomposition of $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ -1 & -1 & 4\end{array}\right]$. Hence obtain the Moore-Penrose of A.
5. Which of the following statements are True and which are not ? Give reasons for your answers, with a short proof or a counter-example.
(a) The sum of two diagonalisable linear operators on a finite-dimensional vector space is diagonalisable.
(b) Each entry of a positive definite matrix is non-negative.
(c) The rank of an $\mathrm{n} \times \mathrm{n}$ matrix is the number of non-zero rows in it.
(d) $\operatorname{For} \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$, $\operatorname{det} \mathrm{A} \leq \mathrm{a}_{11} \mathrm{a}_{22} \ldots \mathrm{a}_{\mathrm{nn}}$, where $\mathrm{A} \in \mathbf{M}_{\mathrm{n}}(\mathbf{R})$.
(e) Any two distinct eigenvectors of a matrix will be linearly independent.
