No. of Printed Pages : 8

MMT-008

M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER
SCIENCE) [M. Sc. (MACS)]

Term-End Examination

June, 2021
MMT-008 : PROBABILITY AND STATISTICS
Time: 3 Hours
Maximum Marks : 100

Note: (i) Question No. 8 is compulsory. Attempt any six questions from question nos. 1 to 7.
(ii) Use of scientific and non-programmable calculator is allowed.
(iii) Symbols have their usual meanings.

1. (a) Let (X, Y) have the joint p.d.f. given by: 9 $f(x, y)= \begin{cases}1, & \text { if }|y|<x ; 0<x<1 \\ 0, & \text { otherwise }\end{cases}$
(i) Find the marginal p.d.f.'s of X and Y .
(ii) Test the independence of X and Y .
(iii) Find the conditional distribution of X given $\mathrm{Y}=y$.
(iv) Compute $\mathrm{E}(\mathrm{X} \mid \mathrm{Y}=y) \quad$ and $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=x)$.
(b) Let $\mathrm{X} \sim \mathrm{N}_{3}(\mu, \Sigma)$, where $\mu=[5,3,4]^{\prime}$ and

$$
\Sigma=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 0.5 \\
1 & 0.5 & 1
\end{array}\right)
$$

Find the distribution of :

$$
\binom{2 \mathrm{X}_{1}+\mathrm{X}_{2}-\mathrm{X}_{3}}{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}}
$$

2. (a) Determine the principal components $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ and Y_{3} for the covariance matrix :

$$
\Sigma=\left(\begin{array}{rrr}
1 & -2 & 0 \\
-2 & 5 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Also calculate the proportion of total population variance for the first principal component.
(b) Consider a Markov chain with transition probability matrix :

$$
\mathrm{P}=\begin{gathered}
1 \\
1 \\
1 \\
2 \\
2 \\
3 \\
4\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{1}{2}
\end{array}\right)
\end{gathered}
$$

(i) Whether the chain is irreducible ? If irreducible classify the states of a Markov chain i. e., recurrent, transient, periodic and mean recurrence time.
(ii) Find the limiting probability vector.
3. (a) At a certain filling station, customers arrive in a Poisson process with an average time of 12 per hour. The time interval between service follows exponential distribution and as such the mean time taken to service to a unit is 2 minutes. Evaluate :
(i) Probability that there is no customer at the counter.
(ii) Probability that there are more than two customers at the counter.
(iii) Average no. of customers in a queue waiting for service.
(iv) Expected waiting time of a customer in the system.
(v) Probability that a customer wait for 0.11 minutes in a queue.
(b) Box A contains 4 red, 2 white and 6 black balls and box B contains 3 red and 5 white balls. A fair die is tossed. If 1 or 6 appears, a ball is chosen from box A, otherwise a ball is chose from B. If a red ball is chosen, what is the chance that a 6 appeared on a die?

7
4. (a) Let $\left\{\mathrm{X}_{n}\right\}$ be a branching process where the probability distribution of number of offsprings be geometric. Then find the probability generating function of 2 nd generation in G. W. Branching processes with $\mathrm{X}_{0}=1$ and its expectation i.e., E (size of second generation).
(b) A service station has 5 mechanics each of whom can service a scooter in 2 hours on the average. The scooters are registered at a single counter and then sent for servicing to different mechanics. Scooters arrive at a service station at an average rate of

2 scooters per hour. Assuming that the scooter arrivals are Poisson and service times are exponentially distributed, determine :

8
(i) Identify the model.
(ii) The probability that the system shall be idle.
(iii) The probability that there shall be 3 scooters in the service centre.
(iv) The expected no. of scooters waiting in a queue.
(v) The expected no. of scooters in the service centre.
(vi) The average waiting time in a queue.
5. (a) A random sample of 12 factories was conducted for the pairs of observations on sales $\left(x_{1}\right)$ and demands $\left(x_{2}\right)$ and the following information was obtained: 8 $\Sigma \mathrm{X}=96, \Sigma \mathrm{Y}=72, \Sigma \mathrm{X}^{2}=780, \Sigma \mathrm{Y}^{2}=480$, $\Sigma \mathrm{XY}=588$
The expected mean vector and variance covariance matrix for the factories in the population are:
and $\quad \Sigma=\left[\begin{array}{cc}13 & 9 \\ 9 & 7\end{array}\right]$.

$$
\begin{aligned}
\mu & =\left[\begin{array}{l}
9 \\
7
\end{array}\right] \\
\Sigma & =\left[\begin{array}{cc}
13 & 9 \\
9 & 7
\end{array}\right] .
\end{aligned}
$$

$$
\leq
$$

Test whether the sample confirms its truthness of mean vector at 5% level of significance, if :
(i) Σ is known,
(ii) Σ is unknown.
[You may use : $\chi_{2,0.05}^{2}=10.60, \chi_{3,0.05}^{2}=12.83$,
$\left.\chi_{4,0.05}^{2}=14.89, \mathrm{~F}_{2,10,0.05}=4.10\right]$
(b) Let X and Y have bivariate normal distribution with parameters: 5
$\mu_{\mathrm{X}}=5, \quad \mu_{\mathrm{Y}}=\quad 10, \quad \sigma_{\mathrm{X}}^{2}=1, \sigma_{\mathrm{Y}}^{2}=25$
and $\operatorname{corr}(\mathrm{X}, \mathrm{Y})=\rho$.
If $\rho>0$, find ρ when $\mathrm{P}(4<\mathrm{Y}<16 \mid \mathrm{X}=5)$ $=0.954$.
Use $\mathrm{P}(-2<\mathrm{Z}<2)=0.954$.
(c) Using the value of ρ obtained in (b), calculate $\mathrm{V}(\mathrm{Y} \mid \mathrm{X}=5)$.
6. (a) Let the random vector $\mathrm{X}^{\prime}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$ has mean vector $[-2,3,4]$ and variance covariance matrix $=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9\end{array}\right)$. Fit the equation $\mathrm{Y}=b_{0}+b_{1} \mathrm{X}+b_{2} \mathrm{X}_{2}$. Also obtain the multiple correlation coefficient between X_{3} and $\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]$.
(b) Let $\left\{\mathrm{N}_{n}, n=0,1,2, \ldots \ldots ..\right\}$ be a renewal process with sequence of renewal periods $\left\{\mathrm{X}_{i}\right\}$. Each X_{i} follows the Bernoulli distribution with $\mathrm{P}\left(\mathrm{X}_{i}=0\right]=0.3$ and $\mathrm{P}\left(\mathrm{X}_{i}=1\right)=0.7=p$. Find the distribution of $\left\{\mathrm{N}_{n}, n=0,1,2, \ldots \ldots . ..\right\}$.
(c) Define ultimate extinction in a branching process. Let $p_{k}=b c^{k-1}, k=1,2, \ldots \ldots \ldots$; $0<b<c<b+c<1$ and $p_{0}=1-\sum_{k=1}^{\infty} p_{k}$.
Then discuss the probability of extinction in different cases for $\mathrm{E}\left(\mathrm{X}_{1}\right) \geq 1$ or $\mathrm{E}\left(\mathrm{X}_{1}\right)<1$.

5
7. (a) If the random vector Z be $\mathrm{N}_{4}(\mu, \Sigma)$, where:

8

$$
\begin{aligned}
\mu & =\left[\begin{array}{r}
1 \\
2 \\
5 \\
-2
\end{array}\right] \\
\Sigma & =\left[\begin{array}{rrrr}
3 & 3 & 0 & 9 \\
3 & 2 & -1 & 1 \\
0 & -1 & 6 & -3 \\
9 & 1 & -3 & 7
\end{array}\right] .
\end{aligned}
$$

Find $r_{34}, r_{34.21}$.
(b) Suppose life times $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots . .$. are i.i.d. uniformly distributed on $(0,3)$ and $\mathrm{C}_{1}=2$ and $\mathrm{C}_{2}=8$. Find:
(i) μ^{T}
(ii) T which minimizes C (T) and which is the better policy in the long-run in terms of cost.
8. State whether the following statements are true or false. Justify your answer with a short proof or a counter example:

10
(i) If P is a transition matrix of a Markov chain, then all the columns of $\lim _{n \rightarrow \infty} p^{n}$ are identical.
(ii) In a variance-covariance matrix all elements are always positive.
(iii) If $X_{1}, X_{2}, X_{3}, X_{4}$ are i.i.d. from $\mathrm{N}_{2}(\mu, \Sigma)$, then $\frac{\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}}{4}$ follows $\mathrm{N}_{2}\left(\mu, \frac{1}{4} \Sigma\right)$.
(iv) The partial correlation coefficients and multiple correlation coefficients lie between -1 and 1 .
(v) For a renewal function $\mathrm{M}_{t}, \lim _{t \rightarrow 0} \frac{\mathrm{M}_{t}}{t}=\frac{1}{\mu}$.

MMT-008

