No. of Printed Pages : 4

M. Sc. (MATHEMATICS WITH

APPLICATIONS IN COMPUTER SCIENCE) [M. Sc. (MACS)]

Term-End Examination

June, 2021
MMT-003 : ALGEBRA

Time : 2 Hours
Maximum Marks : 50
Note: Question No. 1 is compulsory. Attempt any four of the remaining questions. Calculators are not allowed.

1. State, with reasons, which of the following statements are true and which are false :
(i) If D is an integral domain, and F and L are fields, s. t. $\mathrm{F} \subseteq \mathrm{D} \subseteq \mathrm{L}$, then D is a field.
(ii) Any subgroup of the multiplicative group of non-zero elements of $\mathbf{F}_{13^{4}}$ must be cyclic.
(iii) The number of distinct abelian groups of order $p_{1}^{n_{1}} p_{2}^{n_{2}}$, where p_{i} are primes and $n_{i} \in \mathbf{N}$, is $n_{1} n_{2}$.
(iv) S_{6} has 6 elements of order 6 .
(v) 37 is a square modulo 73 .
2. (a) Let $G=S_{4}$, the symmetric group on 4 symbols. Let G act on G by conjugation, i. e., if $g, a \in \mathrm{G}$, then $g^{*} a=g a g^{-1}$. What is the orbit of the cycle (12) and what is the stabiliser of (12)?
(b) Check whether or not a finite monoid is a group.
2
(c) Write $\left[\begin{array}{cc}3 & 3 \\ -3 & 2\end{array}\right]$ as a product of an orthogonal matrix and an upper triangular matrix. Clearly show each step used in the process.
3. (a) Show that a group of order 108 cannot be simple.
(b) Let $\mathbf{F}_{p^{m}}$ be a subfield of $\mathbf{F}_{p^{n}}$, where p is a prime. Show that m divides n. 3
4. (a) Let a be a generator of the cyclic group \mathbf{F}_{p}^{*}, where p is a prime. Show that $\left(\frac{a}{p}\right)=-1$, (p is odd).
(b) If $\mathrm{G}=\left(\{a, b\},\left\{g_{0}\right\},\left\{g_{0} \rightarrow b, g_{0} \rightarrow a b\right\}, g_{0}\right)$, find the language generated by G. 2
(c) Show that every semigroup is the homomorphic image of a free semigroup. 3
5. (a) Is $\mathrm{Q}(\sqrt[7]{5})$ a Galois extension of Q ? If so, what is the Galois group of $\mathrm{Q}(\sqrt[7]{5})$ over Q ? If not, what is the smallest extension of $\mathrm{Q}(\sqrt[7]{5})$ which is Galois over Q ? What is the degree of this extension over Q ? Justify your answers. 7
(b) Write the class equation of a group G of order n. Is there a group of order 10 with class equation $10=1+2+2+5$? If yes, exhibit the group and its conjugacy classes. If no, give a class equation of a group of order 12.

3
6. (a) Solve the following simultaneous system of congruences :

4

$$
x \equiv 2(\bmod 5), x \equiv 1(\bmod 7), x \equiv 3(\bmod 11) .
$$

(b) Give an example, with justification, of an abelian group of rank 8 and with torsion group being non-cyclic of order 8 .
(c) Find a free group F and $\mathrm{N} \Delta \mathrm{F}$, such that $D_{12} \simeq \frac{F}{N}$.

