BACHELOR OF SCIENCE (B.Sc.) # Term-End Examination June, 2021 ## PHYSICS PHE-09 : OPTICS Time: 2 hours Maximum Marks: 50 Note: All questions are compulsory. However, internal choices are given. The marks for each question are indicated against it. You may use calculator. Symbols have their usual meanings. #### 1. Answer any *three* parts: - (a) Define hue and illuminance. Explain colour blindness. 2+3 - (b) State Malus Law. Unpolarised light is incident on two polarising sheets placed one over the other. If the intensity of light finally transmitted is one-fourth of the intensity of the incident light, calculate the angle between the transmission axes of the polarising sheets. - (c) Newton's rings are formed in reflected light with light of $\lambda = 6000\,\text{Å}$ with a liquid between the plane and curved surfaces. If diameter of 4th bright ring is 0·2 cm and radius of curved surface is 50 cm, calculate the refractive index of the liquid. - (d) Distinguish between Fresnel and Fraunhofer class of diffraction. - (e) List three prerequisites for a laser's operation. Explain how population inversion is achieved. #### **2.** Answer any *one* part : $1 \times 5 = 5$ - (a) Deduce the laws of reflection using Fermat's principle. - (b) What are o- and e-waves? If refractive indices of o- and e-waves are 1.6 and 1.55 respectively, calculate the thickness of a quarter wave-plate for light of wavelength 5480 Å. #### **3.** Answer any *one* part : $1 \times 10 = 10$ (a) Show that the resultant intensity due to superposition of two waves of same frequency but having constant phase difference (δ) is given by $$I = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \delta$$ Further show that $$\frac{I_{max}}{I_{min}} \ = \ \frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2}$$ Two waves of same frequency and constant phase difference have intensities in the ratio 25:1. They produce interference pattern. Deduce the ratio of the maximum to minimum intensity in this pattern. 5+3+2 PHE-09 (b) Describe a method for determining the difference in wavelength, when source of light has two wavelengths λ_1 and λ_2 which are very close to each other, using Michelson interferometer. Derive the expression for the difference in wavelength for $\lambda_1 > \lambda_2$. 5+5 #### **4.** Answer any *two* parts : - (a) In an experiment, a big plane metal sheet has a circular aperture of diameter 1·2 mm. A beam of parallel light of wavelength 6000 Å is incident on it normally. The shadow is cast on a screen whose distance from the aperture can be varied continuously. Calculate the distance at which the aperture will transmit 1, 2 and 3 Fresnel zones. - (b) A ruled grating has 15000 lines per inch. Calculate the angles of diffraction for violet $(\lambda = 4000 \text{ Å})$ and red $(\lambda = 8000 \text{ Å})$ colours in the first order of spectrum. - (c) Define resolution limit and resolving power. With help of a diagram, explain Rayleigh's criterion for resolution of two optical sources. #### **5.** Answer any *two* parts: - (a) How is a hologram different from an ordinary photograph? If the angle subtended at the hologram by the signal and the reference beam is 15°, what is the spacing of the fringes provided the wavelength is 492 nm. - (b) If light of 660 nm wavelength has a wave train 20λ long, what is its (i) coherence length, and (ii) coherence time? - (c) Explain the differences between the step index and gradient index fibres with the help of diagrams. # विज्ञान स्नातक (बी.एस सी.) सत्रांत परीक्षा जून, 2021 # भौतिक विज्ञान पी.एच.ई.-09 : प्रकाशिकी समय : 2 घण्टे अधिकतम अंक : 50 नोट: सभी प्रश्न अनिवार्य हैं । तथापि, आंतरिक विकल्प दिए गए हैं । प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं । आप कैल्कुलेटर का उपयोग कर सकते हैं । प्रतीकों के अपने सामान्य अर्थ हैं । 1. किन्हीं *तीन* भागों के उत्तर दीजिए : - (क) छटा और प्रदीप्ति घनत्व को परिभाषित कीजिए। वर्णान्धता को समझाइए। - (ख) मेलस नियम का कथन लिखिए । अध्रुवित प्रकाश एक-दूसरे के ऊपर रखी दो ध्रुवक चादरों पर आपतित होता है । यदि अंततः पारगत प्रकाश की तीव्रता आपतित प्रकाश की तीव्रता की एक-चौथाई रह जाती है, तो ध्रुवक चादरों के पारगमन अक्षों के बीच का कोण परिकलित कीजिए । - (ग) समतल पृष्ठ और वक्र पृष्ठ के बीच एक द्रव रख कर $\lambda = 6000 \text{ Å}$ वाले परावर्तित प्रकाश के कारण न्यूटन वलय प्राप्त किए जाते हैं । यदि चौथे दीप्त वलय का व्यास 0.2 cm है और वक्र पृष्ठ की त्रिज्या 50 cm है, तो द्रव का अपवर्तनांक परिकलित कीजिए। - (घ) फ्रेनल और फ्राउनहोफर विवर्तनों में अंतर स्पष्ट कीजिए। - (ङ) लेसर प्रचालन के लिए तीन पूर्वापेक्षाएँ सूचीबद्ध कीजिए । समझाइए कि जनसंख्या प्रतीपन किस प्रकार प्राप्त किया जाता है । ### 2. किसी *एक* भाग का उत्तर दीजिए : $1 \times 5 = 5$ - (क) फ़र्मा सिद्धांत का उपयोग कर परावर्तन के नियम व्युत्पन्न कीजिए। - (ख) o- तथा e-तरंगें क्या होती हैं ? यदि o- तथा e-तरंगों के अपवर्तनांक क्रमश: 1.6 तथा 1.55 हैं, तो तरंगदैर्ध्य 5480 Å वाले प्रकाश के लिए चतुर्थांश तरंग-पट्टिका की मोटाई परिकलित कीजिए। ## 3. किसी *एक* भाग का उत्तर दीजिए : $1 \times 10 = 10$ (क) सिद्ध कीजिए कि समान आवृत्ति परंतु नियत कलांतर (δ) वाले दो तरंगों के अध्यारोपण के फलस्वरूप उत्पन्न परिणामी तरंग की तीव्रता का व्यंजक है: $$I = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \delta$$ साथ ही, यह भी सिद्ध कीजिए कि $$\frac{I_{max}}{I_{min}} \; = \; \frac{\left(\sqrt{I_1} \, + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} \, - \sqrt{I_2}\right)^2} \label{eq:imax}$$ समान आवृत्ति और नियत कलांतर वाली दो तरंगों की तीव्रताओं का अनुपात 25 : 1 है । इन तरंगों द्वारा व्यतिकरण पैटर्न उत्पन्न होता है । इस पैटर्न में अधिकतम और न्यूनतम तीव्रताओं का अनुपात व्युत्पन्न कीजिए। 5+3+2 (ख) जब प्रकाश स्रोत द्वारा दो निकटवर्ती मानों वाले तरंगदैर्ध्य $\lambda_1 \ \text{तथा} \ \lambda_2 \ \text{उत्सर्जित होते हैं, तो इन तरंगदैर्ध्यों के मानों}$ $\dot{\mathbf{H}} \ \ \dot{\mathbf{H}} \dot{\mathbf{$ #### 4. किन्हीं दो भागों के उत्तर दीजिए: - (क) एक प्रयोग में, धातु की एक बड़ी समतल चादर में एक वृत्तीय द्वारक है जिसका व्यास 1·2 mm है । λ = 6000 Å तरंगदैर्ध्य वाले प्रकाश के समांतर किरणपुंज, द्वारक पर लंबवत् आपितत होता है । इसकी छाया एक ऐसे परदे पर पड़ती है जिसकी द्वारक से दूरी में लगातार परिवर्तन किया जा सकता है । वह दूरी परिकलित कीजिए जिस पर द्वारक 1, 2 तथा 3 फ्रेनल जोन संचरित होने देगा । - (ख) एक रेखांकित ग्रेटिंग में प्रित इंच 15000 रेखाएँ हैं। स्पेक्ट्रम के प्रथम कोटि में बैंगनी (λ = 4000 Å) और लाल (λ = 8000 Å) रंगों के लिए विवर्तन कोण परिकलित कीजिए। - (ग) विभेदन सीमा तथा विभेदन क्षमता को परिभाषित कीजिए । चित्र की सहायता से दो प्रकाशिक स्रोतों के विभेदन के लिए रैले निकष समझाइए । - (क) होलोग्राम, सामान्य फ़ोटोग्राफ से किस प्रकार भिन्न होता है ? यदि सिग्नल और संदर्भ किरणपुंज द्वारा होलोग्राम पर अंतरित कोण 15° हो, तो फ्रिन्जों का अंतराल क्या होगा यदि तरंगदैर्ध्य का मान 492 nm है। - (ख) यदि 660 nm तरंगदैध्यं वाले प्रकाश की तरंगाविल 20λ लंबी हो, तो उसकी (i) कला संबद्धता लंबाई और (ii) कला संबद्धता समय क्या होगा ? - (ग) चित्रों की सहायता से चरण-सूचक तंतु और प्रवणता-सूचक तंतु में अंतर समझाइए ।