BACHELOR OF SCIENCE (B.Sc.) Term-End Examination June, 2021

PHYSICS

PHE-15: ASTRONOMY AND ASTROPHYSICS

Time: 2 hours Maximum Marks: 50

Note: Attempt all questions. Symbols have their usual meanings. You can use a calculator.

1. Attempt any *five* parts:

 $5 \times 3 = 15$

- (a) The apparent magnitude of Polaris is +2.3 while that of the Sun is -26.81. Which star is brighter and by what factor?
- (b) A satellite measures the parallax angle of a star as 0.005 arc-second. What is the distance of the star from the satellite?

- (c) Find the magnitude of the faintest object that a 3.6 m telescope can detect.
- (d) The temperature inside a sunspot is 4000 K and that of the photosphere is 6000 K. Calculate the strength of the magnetic field which will keep the sunspot in equilibrium with its surroundings. (Given that $\mu = 4\pi \times 10^{-7} \text{ NA}^{-2}, \ k = 1 \cdot 38 \times 10^{-23} \text{ JK}^{-1}, \ the number density N of particles ~10^{23})$
- (e) A bright star has a surface temperature of 3500 K and is 10^5 times more luminous than the Sun. Calculate its radius in terms of solar radius (R_{\odot}). What kind of star could it be if its absolute magnitude is zero?
- (f) Calculate the free-fall time for a molecular cloud whose initial density is 10^{-17} g cm⁻³.
- (g) The luminosity of a white dwarf star of mass $1~M_{\odot}$ is $10^{-3}~L_{\odot}$. Its total thermal energy is 10^{48} erg. If the luminosity of the Sun is $L_{\odot} = 4 \times 10^{26}~\mathrm{J s^{-1}}$, calculate the time for which white dwarf will keep shining with its present luminosity.
- (h) If the Hubble's constant H = 70 km/s/Mpc, estimate the age of the Universe in years, given 1 pc = 3.084×10^{16} m.

PHE-15

2.	(a)	Using Virial theorem, how do you estimate the average temperature in the interior of a	
		star?	4
	(b)	Calculate the energy density \mathbf{u}_{ν} of radiation	
		field at a point and hence write down specific	
		intensity of black body radiation. Show that	
		the pressure due to isotropic radiation is	
		given by 1/3 of the energy density.	6
		OR	
	(a)	With the help of a neat diagram, explain the	
		diurnal motion of the stars.	4
	(b)	What are circumpolar stars? At what	
		latitude is Procyon ($\delta = 05^{\circ}18'S$)	4
	(c)	circumpolar?	4
	(c)	The difference between longitudes of two cities is about 20°. What is the difference in	
		their local times?	2
3.	(a)	What is a sunspot cycle ? Sketch and	
		describe the butterfly diagram related to	
		occurrence of sunspots.	7
	(b)	The number density of particles (assume	
		hydrogen) in the photosphere is 10^{20} particles	
		per cm ⁻³ and the strength of magnetic field of	
		the Sun is 1 G. Calculate the velocity of	0
		Alfven waves in the photosphere.	3
	(2)	OR	
	(a)	Explain the granular structure of the photosphere. Describe briefly the chemical	
		composition of the photosphere.	5
	(b)	Describe the nebular model of the formation	
		of the solar system.	5
PHE-15		3 P.T.	Ο.

- **4.** (a) Explain the concept of Chandrasekhar limit and obtain its expression.
 - (b) Calculate the gravitational red shift for the yellow lines ($\lambda = 5800$ Å) on the surface of Sirius-B when photon travels a distance of 1 m. Take the mass of Sirius-B as equal to 1 M_{\odot} and its radius 16000 km.

5

5

5

5

5

OR

- (a) With the help of a neat diagram, explain the emission of pulses from a neutron star.
- (b) Suppose the Sun shrinks to the size of a neutron star of radius 10⁶ cm. Calculate the magnetic field strength at the surface of the neutron star. Take radius of the Sun as 10¹¹ cm and the magnetic field at the Sun's surface as 1 G.
- **5.** Derive the Friedmann equation and sketch its solution for k > 0.

OR

Describe the nature of activities near the active galactic nuclei. Distinguish between radio galaxies and quasars.

3+2=5

विज्ञान स्नातक (बी.एस सी.) सत्रांत परीक्षा

जून, 2021

भौतिक विज्ञान

पी.एच.ई.-15: खगोलिकी और खगोल भौतिकी

समय : 2 घण्टे अधिकतम अंक : 50

नोट: सभी प्रश्न कीजिए। प्रतीकों के अपने सामान्य अर्थ हैं। आप कैल्कुलेटर का उपयोग कर सकते हैं।

1. कोई *पाँच* भाग कीजिए:

 $5 \times 3 = 15$

- (क) पोलेरिस का दृष्ट कांति-मान + 2·3 है और सूर्य का दृष्ट कांति-मान – 26·81 है । इनमें से कौन-से तारे की द्युति अधिक है और कितनी ?
- (ख) एक उपग्रह द्वारा किसी तारे का लंबन कोण 0.005 arc-second मापा जाता है। उपग्रह से तारे की दूरी क्या है?

- (ग) 3.6 m दूरबीन द्वारा संसूचित किए जा सकने वाले सबसे धुँधले पिंड का कांति-मान ज्ञात कीजिए।
- (घ) सूर्य-कलंक के भीतर का तापमान $4000~\mathrm{K}$ है और प्रकाश-मंडल का तापमान $6000~\mathrm{K}$ है । चुम्बकीय क्षेत्र की तीव्रता का वह मान परिकलित कीजिए जिस पर सूर्य-कलंक अपने आसपास के क्षेत्र से साम्यावस्था में होगा । (दिया गया है कि $\mu = 4\pi \times 10^{-7}~\mathrm{NA}^{-2}, \, \mathrm{k} = 1.38 \times 10^{-23}~\mathrm{JK}^{-1}, \, \mathrm{a}$ का संख्या घनत्व N $\sim 10^{23}$)
- (ङ) एक चमकीले तारे का पृष्ठीय तापमान $3500~\mathrm{K}$ है और उसकी ज्योति सूर्य की अपेक्षा 10^5 गुनी अधिक है । सौर त्रिज्या (R_\odot) के पदों में उसकी त्रिज्या की गणना कीजिए । यदि उसका निरपेक्ष कांति-मान शून्य हो, तो वह किस प्रकार का तारा हो सकता है ?
- (च) एक आण्विक बादल का, जिसका आरंभिक घनत्व $10^{-17}~{
 m g~cm}^{-3}~{
 m \ref{thm}},~{
 m Hm}$ -पतन समय परिकलित कीजिए ।
- (छ) $1~{\rm M}_{\odot}$ द्रव्यमान वाले एक श्वेत वामन तारे की ज्योति $10^{-3}~{\rm L}_{\odot}$ है । इसकी कुल ऊष्मीय ऊर्जा $10^{48}~{\rm erg}$ है । यदि सूर्य की ज्योति ${\rm L}_{\odot}=4\times10^{26}~{\rm Js}^{-1}$ हो, तो वह समय परिकलित कीजिए जिसमें श्वेत वामन अपनी वर्तमान ज्योति से चमकता रहेगा ।
- (ज) यदि हबल नियतांक $H=70~{\rm km/s/Mpc}$ हो, तो ब्रह्मांड की वर्षों में आयु ज्ञात कीजिए । दिया गया है $1~{\rm pc} = 3.084 \times 10^{16}~{\rm m}.$

2. (ආ)	ावारयल प्रमय का उपयोग कर आप एक तार के भातर के तापमान का औसत अनुमान कैसे लगाते हैं ?	4
(평)	किसी बिंदु पर विकिरण क्षेत्र के ऊर्जा घनत्व \mathbf{u}_{ν} की गणना कीजिए। अतएव, कृष्णिका विकिरण के लिए विशिष्ट तीव्रता का व्यंजक लिखिए। सिद्ध कीजिए कि समदैशिक विकिरण के कारण दाब का मान ऊर्जा घनत्व का $1/3$ होता है।	
	अथवा	
(क)	एक स्वच्छ आरेख की सहायता से तारों की दैनिक गति समझाइए।	4
(ख)	सदोदित तारे क्या होते हैं ? किस अक्षांश पर प्रोसिऑन तारा (δ = 05°18′S) सदोदित होता है ?	4
(ग)	दो शहरों के रेखांशों के बीच 20° का अंतर है। उनके स्थानीय समयों में कितना अंतर होगा ?	2
3. (क)	सूर्य-कलंक का आवर्तकाल क्या होता है ? तितर्ल रेखाचित्र, जो सूर्य-कलंकों के होने से संबंधित है, खींचे और उसका वर्णन करें।	
(ख)	प्रकाश-मंडल में कणों (मान लीजिए कि हाइड्रोजन) का संख्या घनत्व 10^{20} कण प्रति ${ m cm}^{-3}$ है और सूर्य के चुम्बकीय क्षेत्र की तीव्रता $1~{ m G}$ है । प्रकाश-मंडल में ऐल्फवेन तरंगों का वेग परिकलित कीजिए ।	
	अथवा	
(क)	प्रकाश-मंडल की कणिकामय संरचना की व्याख्या कीजिए । प्रकाश-मंडल के रासायनिक संघटन का संक्षेप में वर्णन कीजिए।	
(碅)	सौर मंडल के निर्माण के नीहारिका मॉडल का वर्णन कीजिए।	5
PHE-15	7	P.T.O.

4.	(क)	चंद्रशेखर सीमा की अवधारणा समझाइए और उसका					
		व्यंजक प्राप्त कीजिए।	5				
	(ख)	सिरियस-B की सतह पर पीली रेखाओं ($\lambda = 5800 \ { m \AA}$)					
		के लिए गुरुत्वीय अभिरक्त विस्थापन परिकलित कीजिए					
		जब फ़ोटॉन 1 m दूरी तय करता है। सिरियस-B का					
		द्रव्यमान $1~{ m M}_{\odot}$ है और उसकी त्रिज्या $16000~{ m km}$ है।	5				
	अथवा						
	(क)	एक स्वच्छ चित्र की सहायता से, न्यूट्रॉन तारे से स्पंदों					
		का उत्सर्जन समझाइए ।	5				
	(ख)	मान लीजिए कि सूर्य सिकुड़ कर $10^6\mathrm{cm}$ त्रिज्या वाले					
		न्यूट्रॉन तारे के आमाप का हो जाता है। इस न्यूट्रॉन					
		तारे की सतह पर चुम्बकीय क्षेत्र की तीव्रता परिकलित					
		कीजिए । सूर्य की त्रिज्या $10^{11}\mathrm{cm}$ लीजिए और सूर्य					
		की सतह पर चुम्बकीय क्षेत्र 1 G लीजिए ।	5				
5.	फ्रीडग	मान समीकरण व्युत्पन्न कीजिए और k > 0 के लिए उसके					
	हल र	का आरेख खींचिए ।	5				
		अथवा					
	सक्रि	य मंदाकिनीय नाभिकों के निकट सक्रियता की प्रकृति का					
	वर्णन	कीजिए । रेडियो मंदाकिनियों और क्वासरों में अंतर स्पष्ट					
	कीजि	ाए ।	=5				