BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination June, 2021

ELECTIVE COURSE : MATHEMATICS MTE-12 : LINEAR PROGRAMMING

Time: 2 hours Maximum Marks: 50

(Weightage: 70%)

Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 7. Use of calculators is not allowed.

- 1. Which of the following statements are *True* and which are *False*? Give a short proof or a counter-example in support of your answer. $5\times2=10$
 - (a) Every feasible point in a bounded LP solution space can be determined from its feasible extreme points.
 - (b) The intersection of a finite number of convex sets need not be convex.
 - (c) The number of basic variables in a feasible solution of a balanced transportation problem with 'm' sources and 'n' destinations is mn.

- (d) The optimal solution of a two-person zero-sum game always corresponds to a saddle point regardless of whether the players use pure or mixed strategies.
- (e) In a dual LPP, the number of variables in primal are more than the number of constraints in dual.

6

4

2. (a) Solve the following LPP by graphical method:

$$\text{Max Z} = x_1 + x_2 + 3$$

Subject to

$$x_1 + 3x_2 \le 9$$

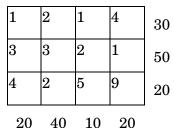
$$2x_1 + x_2 \le 8$$

$$3x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

(b) Write the dual of the following LPP:

Min
$$Z = x_1 + x_2 + 3x_3$$


Subject to

$$3x_1 + 2x_2 + x_3 \le 3$$

$$2x_1 + x_2 + 2x_3 = 2$$

$$x_1, x_2, x_3 \ge 0$$

3. (a) Consider the following transportation problem:

MTE-12

- (i) Is this transportation problem balanced ? Give reasons for your answer.
- (ii) Obtain a basic feasible solution to the above transportation problem by North-West Corner method.

5

5

(b) For the following matrix game, write down the equivalent LPPs, and solve the game.

$$\begin{bmatrix} & & B \\ -1 & & 2 \\ & 1 & & 0 \end{bmatrix}$$

4. (a) A company manufactures two models of rollers X and Y. When preparing the 2019 budget it was found that the limitations on capacity were represented by the following weekly production maxima:

Model	Foundry	Machine shop	Contribution per model	
Model X	160	200	₹ 120	
Model Y	240	150	₹ 90	

In addition, the material required for Model X was in short supply and only sufficient for 140 units per week could be guaranteed for the year. Formulate the LPP.

MTE-12 3 P.T.O.

(b) A company has 5 jobs to be processed by 5 mechanics. The following table gives the return in rupees when the i^{th} job is assigned to the j^{th} mechanic, (i, j = 1, 2, ... 5). How should the jobs be assigned to the mechanics so as to maximise the overall return?

				Jobs		
	_	1	2	3	4	5
	1	22	28	30	18	30
	2	30	34	18	11	26
Mechanics	3	31	17	23	20	27
	4	12	28	31	26	26
	5	19	23	30	25	29

5

3

7

- **5.** (a) Is the set of vectors {(1, 2, 3), (3, 4, 1), (2, 3, 2)} linearly independent? Give reasons for your answer.
 - (b) Solve the following game:

$$\mathbf{A} = \begin{bmatrix} 8 & 5 & 8 \\ 8 & 6 & 5 \\ 7 & 4 & 5 \\ 6 & 5 & 6 \end{bmatrix}$$

MTE-12

6. (a) A company has three plants and four warehouses. The supply and demand in units and the corresponding transportation costs are given below:

		Ware			
Plant	I	II III IV A		Availability	
A	7	10 10	②0 ₁₄	8	30
В	7	11	(5) ₁₂	35) ₁₆	40
С	②0 ₅	① 8	15	9	30
Demand	20	20	25	35	80

- (i) Is this solution degenerate ? Give reason for your answer.
- (ii) Check whether the given basic feasible solution is optimal. If not, modify the given solution and find an optimal solution.

6

4

(b) For the following Pay-off matrix, find the value of the game and the strategies of players A and B by using graphical method:

MTE-12 5 P.T.O.

7. (a) Solve the following LPP using two-phase method:

6

 $Max. Z = 3x_1 + 2x_2$

Subject to

$$2x_1+x_2\leq 2$$

$$3x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

(b) Sketch the region $\{(x, y) | x^2 + y^2 \ge 1, y^2 \le x\}$. Is the region convex? Justify your answer. 4

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा जून, 2021

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-12 : रैखिक प्रोग्रामन

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: प्रश्न सं. 1 करना अनिवार्य है। प्रश्न सं. 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों का प्रयोग करने की अनुमित नहीं है।

- निम्नलिखित में से कौन-से कथन सत्य और कौन-से असत्य हैं ? अपने उत्तर के पक्ष में एक संक्षिप्त उपपत्ति या प्रतिउदाहरण दीजिए ।
 - (क) एक परिबद्ध LP हल में प्रत्येक सुसंगत बिंदु, इसके सुसंगत चरम बिंदुओं से प्राप्त किया जा सकता है।
 - (ख) परिमित संख्या के अवमुख समुच्चयों के सर्विनिष्ठ का अवमुख होना आवश्यक नहीं है ।
 - (ग) िकसी 'm' स्रोत और 'n' गंतव्य स्थान वाली संतुलित परिवहन समस्या के सुसंगत हल में आधारी चरों की संख्या mn होती है।

- (घ) एक द्वि-व्यक्ति शून्य-योग खेल के इष्टतम हल का हमेशा पल्याण बिंदु होता है चाहे खिलाड़ी विकल्पीय युक्ति अपनाए या अविकल्पीय युक्ति अपनाए ।
- (ङ) एक द्वैती LPP में, आद्य के चरों की संख्या द्वैती के व्यवरोधों की संख्या से अधिक होती है।
- **2.** (क) निम्नलिखित LPP को ग्राफीय विधि से हल कीजिए : 6 $Z = x_1 + x_2 + 3$ का अधिकतमीकरण कीजिए, जबिक

$$x_1 + 3x_2 \le 9$$

 $2x_1 + x_2 \le 8$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$

(ख) निम्नलिखित LPP की द्वैती लिखिए:

 $Z = x_1 + x_2 + 3x_3$ का न्यूनतमीकरण कीजिए, जबकि

4

$$3x_1 + 2x_2 + x_3 \le 3$$

 $2x_1 + x_2 + 2x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

3. (क) निम्नलिखित परिवहन समस्या पर विचार कीजिए :

1	2	1	4	30
3	3	2	1	50
4	2	5	9	20
20	40	10	20	

MTE-12

- (i) क्या यह परिवहन समस्या संतुलित है ? अपने उत्तर के कारण बताइए ।
- (ii) उत्तर-पश्चिम कोना विधि से उपर्युक्त परिवहन समस्या के लिए इसका आधारी सुसंगत हल जात कीजिए।

5

5

5

(ख) निम्नलिखित खेल आव्यूह के लिए तुल्य LPP लिखिए,और इस खेल को हल कीजिए ।

$$A \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$$

4. (क) एक कम्पनी रोलर के दो मॉडल X और Y बनाती है। 2019 का बजट तैयार करते समय क्षमता की जो सीमाएँ पायी गयीं वे साप्ताहिक निर्माण अधिकतम सीमाएँ निम्नलिखित तालिका में दी गयी हैं:

मॉडल	ढलाई-घर	मशीन की दुकानें	योगदान प्रति मॉडल
मॉडल X	160	200	₹ 120
मॉडल Y	240	150	₹ 90

इसके साथ ही मॉडल X के लिए आवश्यक सामग्री की पूर्ति में कमी है और वर्ष में प्रति सप्ताह केवल 140 इकाइयों के लिए ही पर्याप्त है । LPP सूत्रित कीजिए।

MTE-12 9 P.T.O.

(ख) एक कंपनी में 5 कारीगरों को 5 काम करने हैं। जब ith काम jth कारीगर (i, j = 1, 2, ... 5) को सौंपा जाता है, तो प्राप्त लाभ निम्नलिखित सारणी द्वारा प्राप्त होते हैं। प्राप्त लाभ का अधिकतमीकरण करने के लिए किस प्रकार से इन कामों को कारीगरों में सौंपा जाना चाहिए ? 5

				काम		
	F	1	2	3	4	5
	1	22	28	30	18	30
	2	30	34	18	11	26
कारीगर	3	31	17	23	20	27
	4	12	28	31	26	26
	5	19	23	30	18 11 20 26 25	29

- 5. (क) क्या सिदश समुच्चय {(1, 2, 3), (3, 4, 1), (2, 3, 2)}रैखिकत: स्वतंत्र हैं ? अपने उत्तर के कारण दीजिए । 3
 - (ख) निम्नलिखित खेल को हल कीजिए:

$$\mathbf{A} = \begin{bmatrix} 8 & 5 & 8 \\ 8 & 6 & 5 \\ 7 & 4 & 5 \\ 6 & 5 & 6 \end{bmatrix}$$

6. (क) एक कम्पनी के पास 3 कारखाने और 4 गोदाम हैं। इकाइयों की माँग और पूर्ति तथा उनकी संगत परिवहन लागत निम्नलिखित हैं:

		गो			
कारखाना	I II III IV			उपलब्धता	
A	7	10 10	②0 ₁₄	8	30
В	7	11	(5) ₁₂	③5) ₁₆	40
С	②0 ₅	10 ₈	15	9	30
माँग	20	20	25	35	80

- (i) क्या यह हल अपभ्रष्ट है ? अपने उत्तर का कारण दीजिए ।
- (ii) जाँच कीजिए कि दिया गया प्रारम्भिक आधारी सुसंगत हल इष्टतम है या नहीं । यदि नहीं, तो हल को सुधारिए और इष्टतम हल ज्ञात कीजिए । 6

4

(ख) ग्राफीय-विधि से निम्नलिखित भुगतान आव्यूह के लिए खिलाड़ियों A और B की युक्तियाँ और खेल का मान ज्ञात कीजिए :

खিলাड़ी B
$${\rm B_1} \quad {\rm B_2} \quad {\rm B_3}$$
 खिलाड़ी A
$${\rm A_1} \quad \begin{bmatrix} 6 & 2 & 7 \\ 9 & 10 & 1 \end{bmatrix}$$

7. (क) द्वि-विमीय विधि से निम्नलिखित LPP को हल कीजिए:

6

4

 $Z = 3x_1 + 2x_2$ का अधिकतमीकरण कीजिए, जबिक

$$2x_1 + x_2 \le 2$$

$$3x_1 + 4x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

(ख) प्रदेश $\{(x, y) | x^2 + y^2 \ge 1, y^2 \le x \}$ आरेखित कीजिए । क्या यह प्रदेश अवमुख है ? अपने उत्तर का कारण दीजिए ।