No. of Printed Pages: 16

MTE-11

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

June, 2021

MTE-11: PROBABILITY AND STATISTICS

Time: 2 Hours Maximum Marks: 50

Note: (i) Question No. 7 is compulsory.

- (ii) Attempt any four questions from Question Nos. 1 to 6.
- (iii) Use of calculator is not allowed.
- 1. (a) The mean of 5 observations is 15 and the variance is 9. If two more observations having values 3 and 10 are combined with these 5 observations, what will be the new mean and variance of the 7 observations?

P. T. O.

[2] MTE-11

(b) Let X be a random variable with p.m.f. given by the following table:

x	p(x)
- 2	$\frac{3}{20}$
- 1	$\frac{4}{20}$
0	$\frac{6}{20}$
1	$\frac{4}{20}$
2	$\frac{3}{20}$

Compute $E(X^2)$.

2

(c) A factory produces certain type of product by 3 machines. The respective daily production figures are:

Machine X: 3000 units

Machine Y: 2500 units

Machine Z: 4500 units

[3] MTE-11

Past experience show that 1% of products produced by machine X, 1.2% by machine Y and 2% by machine Z are defective. A product is drawn at random. What is the probability that it has been produced by machine Y, if the drawn item is found to be defective?

2. (a) For a continuous distribution whose probability density function is given by :

$$F(x) = \frac{3x}{4}(2-x); \quad 0 \le x \le 2;$$

find the expected value and variance of X.

4

(b) The following information about the two samples drawn from two normal populations is:

$$n_1 = 6, \Sigma (x_i - \overline{x})^2 = 60.2, \ n_2 = 8$$

and $\Sigma (y_i - \overline{y})^2 = 58.4$.

Construct 99% confidence interval for the ratio of population variance. [You may use $F_{(5, 7) (0.005)} = 3.97$, $F_{(7, 5) (0.005)} = 4.88$].

[4] MTE-11

3. (a) The following table gives the number of road accidents that occurred during the various days of the week:

5

Day	No. of Accidents
Monday	14
Tuesday	15
Wednesday	8
Thursday	20
Friday	11
Saturday	9
Sunday	14

Test whether the accidents are uniformly distributed over the week at 1% level of significance.

[You may use
$$\chi^2_{0.01,6}=16.81,$$
 $\chi^2_{0.01,7}=18.48, \; \chi^2_{0.01,8}=20.09$].

(b) A single letter is selected at random from the word 'STATISTICS'. What is the probability that it is a vowel? 2

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & \theta > 0 \text{ if } x > 0 \\ 0, & \text{otherwise} \end{cases}$$

Show that $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is unbiased estimator for θ .

4. (a) Show that the moment estimator and maximum likelihood estimator are same for the parameter θ of the geometric distribution whose p.m.f. is:

$$P(X = x) = \theta(1 - \theta)^{x}; x = 0, 1, 2 \& \theta > 0.$$

- (b) The height of 100 students of a study centre is approximately normally distributed with mean 65 inches and standard deviation 2.5 inches. Find the number of students whose height is:
 - (i) less than 65 inches
 - (ii) between 60 inches and 70 inches.

[You may use $\phi_{(1.5)} = 0.9332$, $\phi_{(2)} = 0.9772$ and $\phi_{(2.5)} = 0.9938$, where $\phi(Z) = P(Z \le z)$.]

5. (a) Find the most likely price in city A corresponding to the price ₹ 70 in city B from the following data:

	City A	City B
Average price (in ₹)	65	67
Standard deviation	2.5	3.5

It is given that the correlation coefficient between the prices of commodities in two cities is 0.8.

(b) The joint p. d. f. of two random variables X and Y is given by:

$$f(x,y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4};$$
$$0 \le x < \infty, \ 0 \le y < \infty.$$

(i) Find the marginal distributions of X and Y.

[8] MTE-11

- (ii) Conditional distribution of Y for X = x.
- (iii) Check whether X and Y are independent or not.
- (c) Suppose A and B are two equally strong table tennis players. Which of the following two events is more probable?
 - (i) A beats B exactly in 3 games out of 4.
 - (ii) A beats B exactly is 5 games out of 8.
- 6. (a) For a distribution, the mean is 10, variance is 16, skewness is + 1 and kurtosis is 4.

 Obtain the first four moments about origin.

 Also, interpret the nature of the distribution.
 - (b) Given the probability density function:

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}; & 0 \le x \le \theta \\ 0; & \text{otherwise} \end{cases}$$

for testing the null hypothesis $H_0: \theta = 1$ against $H_1: \theta = 2$ by the mean of a single observed value of x. Compute the sizes of type I and type II errors if you choose the critical region as $0.5 \le x$.

- 7. Which of the following statements are true *or* false? Give a short proof or a counter example in support of your answer: 5×2=10
 - (i) Mean square deviation about any arbitrary value A is minimum when A is median.
 - (ii) Mean of Poisson distribution is 2 and variance is 3.
 - (iii) There exists a random variable X for which $P\left\lceil \mu 2\sigma \le X \le \mu + 2\sigma \right\rceil = 0.5.$
 - (iv) If X has the distribution N (10, 9) and if Y = 5X + 3, then Y has distribution N (53, 81).
 - (v) In a problem of testing of a simple hypothesis against a simple alternative, if the probability of type I error is known to be 0.06, then the power of test will be 0.94.

MTE-11

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

जून, 2021

एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे

अधिकतम अंक : 50

नोट: (i) प्र. सं. 7 अनिवार्य है।

- (ii) प्रश्न संख्या 1 से 6 तक कोई **चार** प्रश्न कीजिए।
- (iii) कैलकुलेटरों का प्रयोग करने की अनुमित नहीं है।
- (क) 5 प्रेक्षणों का माध्य 15 और प्रसरण 9 है। यदि
 दो प्रेक्षण -3 और 10 मानों वाले इन 5 प्रेक्षणों
 में और जोड़ दिये जाते हैं, तो इन 7 प्रेक्षणों का
 नया माध्य और प्रसरण क्या होगा ?

(ख)मान लीजिए कि X निम्नलिखित p.m.f. वाला एक यादृच्छिक चर है :

x	p(x)
- 2	$\frac{3}{20}$
-1	
0	$\frac{6}{20}$
1	$\frac{4}{20}$
2	$\frac{3}{20}$

 $\mathrm{E}\left(\mathrm{X}^{2}
ight)$ परिकलित कीजिए।

(ग) एक फैक्टरी 3 मशीनों द्वारा एक विशेष प्रकार का उत्पाद बनाती है। प्रतिदिन बनाये गये उत्पाद के आँकड़े निम्नलिखित हैं:

मशीन X: 3000 इकाइयाँ

मशीन Y: 2500 इकाइयाँ

मशीन Z: 4500 इकाइयाँ

पिछला अनुभव दर्शाता है कि मशीन X से बने 1%, मशीन Y से बने 1.2% और मशीन Z से बने 2% उत्पाद खराब हैं। एक उत्पाद यादृच्छया चुना गया। वह प्रायिकता क्या है कि यह मशीन Y से बना है, यदि निकाला गया उत्पाद खराब है ? 4

2. (क) एक सतत् बंटन जिसका प्रायिकता घनत्व फलन निम्नलिखित है:

$$f(x) = \frac{3x}{4}(2-x); \quad 0 \le x \le 2$$

X का प्रत्याशित मान और प्रसरण ज्ञात कीजिए।
 (ख)दो प्रसामान्य बंटनों से लिए गए दो प्रतिदर्शों की सूचना निम्नलिखित है:

 $n_1=6,\; \Sigma\left(x_i-\overline{x}\right)^2=60.2$ एवं $n_2=8, \Sigma\left(y_i-\overline{y}\right)^2=58.4$ समिष्ट प्रसरणों के अनुपात के लिए 99% पर विश्वास्यता अंतराल ज्ञात कीजिए। [आप $F_{(5,7)\,(0.005)}=3.97, F_{(7,5)\,(0.005)}=4.88$ का प्रयोग कर सकते हैं।]

3. (क) एक सप्ताह के अलग-अलग दिनों में हुई सड़क दुर्घटनाओं की संख्या निम्नलिखित तालिका में दी गयी है:

दिन	दुर्घटनाओं की संख्या
सोमवार	14
मंगलवार	15
बुधवार	8
बृहस्पति	20
शुक्रवार	11
शनिवार	9
रविवार	14

1% सार्थकता स्तर पर परीक्षण कीजिए कि दुर्घटनाएँ सप्ताह में एकसमान वितरित हैं। [आप χ²_{0.01,6} = 16.81, χ²_{0.01,7} = 18.48, χ²_{0.01,8} = 20.09 मानों का प्रयोग कर सकते हैं।] (ख) शब्द 'STATISTICS' में से एक अक्षर यादृच्छया चुना गया। वह प्रायिकता क्या है कि चुना गया अक्षर स्वर (Vowel) होगा ?

 (η) मान लीजिए कि X_1, X_2, \ldots, X_n निम्नलिखित घनत्व फलन वाले एक बंटन से लिया गया यादृच्छिक प्रतिदर्श है :

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & \theta > 0, x > 0 \\ 0, & \end{cases}$$

दर्शाइये कि $\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ के लिए एक अनिभनत आकलक है।

4. (क) दर्शाइए कि p.m.f.:

$$P(X = x) = \theta (1 - \theta)^{x};$$

 $x = 0.1.2$ तथा $\theta > 0$

वाले ज्यामितीय बंटन के प्राचल θ के लिए आघूर्ण आकलक और अधिकतम संभावित आकलक समान हैं।

- (ख) एक अध्ययन केन्द्र के 100 विद्यार्थियों की ऊँचाई लगभग प्रसामान्य बंटन में है जिसका माध्य 65 इंच और मानक विचलन 2.5 इंच है। उन विद्यार्थियों की संख्या ज्ञात कीजिए जिनकी ऊँचाई:
 - (i) 65 इंच से कम है
 - (ii) 60 इंच और 70 इंच के बीच है।

आप मान सकते हैं कि $\phi_{(1.5)}=0.9332$, $\phi_{(2)}=0.9772$ और $\phi_{(2.5)}=0.9938$, जहाँ $\phi(z)=\mathrm{P}\left(\mathrm{Z}\leq z\right)$ ।

5. (क)निम्नलिखित आँकड़ों से शहर B में ₹ 70 मूल्य के संगत शहर A के अधिकतम सम्भावित मूल्य को ज्ञात कीजिए :

	शहर A	शहर B
औसतन मूल्य (₹ में)	65	67
मानक विचलन	2.5	3.5

दोनों शहरों के मूल्यों के बीच सहसंबंध गुणांक दिया गया है जोकि 0.8 है।

(ख) दो यादृच्छिक चरों X और Y का संयुक्त p.d.f. 5

$$f(x,y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4};$$
$$0 \le x < \infty, \ 0 \le y < \infty$$

(i) X और Y के सीमांत बंटन ज्ञात कीजिए।

[16]

- (ii) Y का X = x के लिए सप्रतिबंध बंटन ज्ञात कीजिए।
- (iii) जाँच कीजिए कि X और Y स्वतंत्र हैं या नहीं।
- (ग) मान लीजिए कि A और B दो टेबिल टेनिस के समभारिक खिलाड़ी हैं। निम्नलिखित दो घटनाओं में से कौन-सी घटना अधिक प्रायिक है ?
 - (i) A, B को 4 में से ठीक 3 खेलों में हराता है।
 - (ii) A, B को 8 में से ठीक 5 खेलों में हराता है।
- 6. (क) एक बंटन का माध्य 10, प्रसरण 16, वैषम्यता + 1 और ककुदता 4 है। मूलबिन्दु के सापेक्ष पहले चार आघूर्ण ज्ञात कीजिए। बंटन की प्रकृति भी बताइए।
 - $(ख)_{x}$ के एक प्रेक्षण मान के माध्य द्वारा निराकरणीय परिकल्पना $H_{0}:\theta=1$ विरुद्ध $H_{1}:\theta=2$ के परीक्षण के लिए निम्नलिखित प्रायिकता घनत्व फलन दिया गया है :

$$f(x, \theta) = \begin{cases} \frac{1}{\theta}; & 0 \le x \le \theta \\ 0; & \end{cases}$$

यदि क्रांतिक प्रदेश $0.5 \le x$ है, तो प्रकार I और प्रकार II त्रुटि ज्ञात कीजिए।

- 7. निम्निलिखित कथनों में से कौन-से कथन सत्य और कौन-से कथन असत्य हैं ? अपने उत्तर में एक संक्षिप्त उपपत्ति या प्रति-उदाहरण दीजिए : $5\times2=10$
 - (i) किसी मान A के सापेक्ष माध्य वर्ग विचलन न्यूनतम होता है जब A माध्यिका हो।
 - (ii) प्वॉयसां बंटन का माध्य 2 और प्रसरण 3 है।
 - (iii) ऐसे यादृच्छिक चर X का अस्तित्व होता है जिसके लिए $P\left[\mu-2\sigma\leq X\leq \mu+2\sigma\right]=0.5$.
 - (iv) यदि X का बंटन N (10, 9) है और Y = 5X + 3 है, तो Y का बंटन N (53, 81) होगा।
 - (v) सरल वैकल्पिक के विरुद्ध सरल परिकल्पना के परीक्षण की समस्या में यदि प्रकार I अशुद्धि की प्रायिकता 0.06 है, तो परीक्षण की क्षमता 0.94 होगी।

MTE-11

3,630