No. of Printed Pages : 7
MCSE-004

MASTER OF COMPUTER APPLICATIONS (MCA) (REVISED)

Term-End Examination

June, 2021
MCSE-004 : NUMERICAL AND
STATISTICAL COMPUTING
Time : 3 Hours
Maximum Marks : 100
Note : Question No. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) If $1 / 3$ approximates to 0.333 , determine absolute, relative and percentage error. Differentiate between the terms precision and accuracy. 5
(b) Find the root of the equation $2 x=\cos x+3$ correct to three decimal places by using iteration method. 5
(c) Solve the following system of equations by using Gauss elimination method :

$$
\begin{gather*}
x+2 y+z=3 \tag{5}\\
2 x+3 y+3 z=10 \\
3 x-y+2 z=13
\end{gather*}
$$

(d) Use the Newton-Raphson method to find the root of the equation $x^{3}-2 x-5=0.5$
(e) Find the value of $\Delta \tan ^{-1} x$, the interval of differencing being h.
(f) Determine the constants a and b by the method of least squares, such that $y=a e^{b x}$ fits the following data :

x	y
2	4.077
4	11.084
6	30.128
8	81.897
10	222.62

(g) Write formula ton Lagrange's interpolation and use it to find the value of $\sin (\pi / 6)$, using the data for $y=\sin x$ as given below :

5

x	$\sin x$
0	0
$\frac{\pi}{4}$	0.707
$\frac{\pi}{2}$	1.0

(h) Evaluate the integral $\int_{4}^{5.2} \log x d x$ using Simpson's 1/3 rule.

5
2. (a) Write the formulas for the following distributions:3
(i) Binomial distribution
(ii) Poisson distribution
(iii) Normal distribution
(b) Find the probability that an individual's IQ score is between 91 and 121, provided the individual's IQ score has normal distribution $\mathrm{N}(100,152)$.

5
(c) Statistical parameters for marks in subject A and B of a certain examination are given below :

	A	B
Mean	36	85
Standard Deviation	11	8

Given the coefficient of correlation between
A and $\mathrm{B}= \pm 0.66$.
7
(i) Determine the two equations of regression.
(ii) Calculate the expected marks in A , corresponding to 75 marks obtained in B.
(d) Find the real root for the equation $x^{3}-3 x-5=0$ by using Newton-Raphson method, correct to three decimal places. 5
3. (a) Solve the following system of equations by using LU Decomposition method :

$$
\begin{gathered}
x+y=2 \\
2 x+3 y=5
\end{gathered}
$$

(b) Perform two iterations, to solve the following system of equations using Gauss-
Seidel method. Take initial point as $(0,0,0)$: 7

$$
\begin{gathered}
8 x-3 y+2 z=20 \\
6 x+3 y+12 z=35 \\
4 x+11 y-z=33
\end{gathered}
$$

(c) Using Runge-Kutta method, determine $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1$. Take $h=0.2 . \quad 8$
4. (a) What is 'Goodness to fit test'? What for the said test is required?
(b) A book contains 100 misprints, distributed randomly, throughout its 100 pages. What is the probability that a page observed at random contains at least two misprints? 5
(c) What are residual plots ? Discuss the utility of residual plots. Also give one disadvantage of residual plots. 5
(d) Using Newton's forward interpolation, determine the equation of the polynomial, which passes through the following set of points :

5

x	y
1	-1
2	-1
3	1
4	5

5. (a) What are the two pitfalls of GaussElimination method?
(b) Find the approximate value of root of the equation $x^{3}+x-1=0$, near $x=1$. Using Regula-Falsi method, twice.
(c) Evaluate the integral $\mathrm{I}=\int_{0}^{1} \frac{d x}{1+x}$ by using composite trapzoidal rule, with 5 subintervals.
(d) Write short notes on any two of the following :
(i) Acceptance-Rejection method
(ii) Non-linear Regression
(iii) Bisection method
