MCH-003

No. of Printed Pages: 7

P. G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

June, 2020

MCH-003: SPECTROSCOPIC METHODS

Time: 3 Hours Maximum Marks: 75

Note: (i) Answer any five questions.

- (ii) All questions carry equal marks.
- 1. Answer any five of the following: 3 each
 - (a) Electronic absorption spectrum for molecules are usually broad and called band spectrum? Explain.

- (b) State any three sources of infrared (IR) radiation.
- (c) Discuss the role of monochromators in spectrometers.
- (d) Explain the role of organic solvents in AAS.
- (e) What is the origin of isotopic peaks in mass spectrometry?
- (f) Define quantum yield. Give the mathematical expression explaining all the terms.
- 2. (a) Draw a generalised molecular orbital energy level diagram and explain all the possible transitions for organic compounds with a suitable example.

(b)	Molar absorptivity of a substance is
	3×10^4 cm ⁻¹ mol ⁻¹ dm ⁻³ . Calculate the
	absorbance of a solution containing
	5×10^{-6} mol dm ⁻³ of substance through a
	cuvette of path length 2.0 cm. 5

- (c) State the selection rules for vibrational spectroscopy. Draw an energy level diagram showing the transitions for fundamental vibration and overtones. 5
- 3. (a) Draw the vibrational modes of CO₂

 molecule and comment on their IR and
 Raman activities.

 5
 - (b) Draw a suitably labelled schematic diagram of a double beam spectrophotometer. What are the detectors used in UV-Vis spectrophotometers.
 - (c) Discuss the processes occurring when an analyte is put into a flame.

- (a) Define and differentiate between atomic absorption (AAS) and atomic emission
 (AES) spectrometric methods.
 - (b) What is meant by nebulisation? Explain the principles of cross flow type nebuliser used in ICP-AES.
 - (c) Explain the methodology of quantitative analysis in flame photometry using calibration plot.
- 5. (a) Describe various types of interferences in atomic fluorescence spectrometry with the help of suitable examples.
 - (b) What is the requirement for a nucleus to show NMR spectrum? Which of the following nuclei will show NMR?

16O, 13C, 24Mg, 19F, 31P, 32S

- (c) What do you understand by relaxation mechanisms? Explain its two types—spin-lattice and spin-spin relaxation. What happens to the line width by these processes?
- 6. (a) Draw the structures of Morin or 8-hydroxyquinoline. Explain, how these are used for the analysis of Al as water pollutant.
 - (b) What is bioluminescence? Explain with the help of a suitable example.
 - (c) Discuss the theory of mass spectrum in terms of formation of molecular ion.

 Describe the characteristics of mass spectrum considering the example of CH₈OH.

7.	(a)	Describe	the	func	tionin	g of	graph	ite
		furnace.	Give	any	two	advaı	ntages	of
		GFAAS over flame AAS.						5

- (b) What are the two types of atomic absorption spectrometers? Which one of these is better and why? Draw a schematic sketch of any *one* of these.
- (c) Explain the basic principle of atomic emission spectrometry (AES) and discuss the choice of argon as a plasma gas.
- 8. (a) Define Index of Hydrogen Deficiency (IHD)
 and discuss its importance. Predict IHD of
 the following:

 5
 - (i) C₆H₆
 - (ii) C₇H₈
 - (iii) C₄H₄

- (b) Write short notes on the following: 5
 - (i) Larmor precession
 - (ii) Pascal triangle
- (c) Explain the nature of NMR spectrum of ethanol in low resolution and high resolution. Why does it differ?