M. SC. (MATHEMATICS WITH

 APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)Term-End Examination
June, 2020

MMTE-004 : COMPUTTER GRAPHICS

Time: $1 \frac{1}{2}$ Hours
Maximum Marks : 25
Weightage : 50\%
Note: Question number 1 is compulsory. Attempt any three questions from Question Nos. 2 to 5. Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answer with a short proof or a counter-example : 10
(a) Two successive reflections about an axis do not çhange the original object position.
Р. T. O.
(b) There can be only two principal vanishing points in a projected image.
(c) Bresenham's line drawing algorithm requires performing only integer calculations.
(d) The Liang-Barsky algorithm for line clipping cannot be used both in 2D and 3D.
(e) A Bezier curve passes through the first and last points of the control polygon.
2. (a) Use the Cohen-Sutherland algorithm to clip the line segment joining $P_{1}(70,20)$ and $P_{2}(100,10)$ against a window with lower left hand corner $(50,10)$ and upper right hand corner (80,40). $2 \frac{1}{2}$
(b) Reflect the pyramid A $(1,0,0), \mathrm{B}(0,1,0)$, $\mathrm{C}(0,0,1)$ and $\mathrm{D}(0,0,0)$ about the z-axis. $2 \frac{1}{2}$
3. (a) Distinguish between the following:
(i) The shadow mask method and the beam penetration method.
(ii) Active matrix LCD and passive matrix LCD.
(b) Transform a scene in the world coordinate system with the viewpoint at ($1,1,1$). The view plane vector is $(-2,-2,-2)$ and the view up vector is $(1,0,0)$. 3
4. (a) Use the Bresenham's line generation algorithm for tracing a line segment with vertices $(10,12)$ and $(20,18)$. 2
(b) Use the midpoint circle algorithm to draw a circle of radius $r=8$ units, with centre at the origin. Perform five iterations. 3
5. (a) Write the transformation matrix for rotating a triangle with vertices $A(0,0)$, B (6,0) and $C(3,3)$ about the origin through 90°. Also write the coordinates of the transformed triangle. 2
(b) Find the equation of the Bezier curve which passes through $(0,0)$ and $(-4,2)$ and is controlled through $(14,10)$ and $(4,0)$. 3
