M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS)
 Term-End Examination June, 2020
 MMT-002 : LINEAR ALGEBRA

Time $: 1 \frac{1}{2}$ Hours \quad Maximum Marks : 25

Note : Question No. 5 is compulsory. Answer any three questions from 1 to 4. Calculators are not allowed.

$$
\begin{aligned}
& \text { 1. Find the Jordan canonical form of: } \\
& \qquad A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 3 & 5 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Also find a matrix P so that $P^{-1} A P$ in Jordan form.
2. (a) Find the best least squares quadratic polynomial fit to the data below : 3

x	y
-1	0
0	1
1	3
2	9

(b) Evaluate $\exp \left(\mathrm{A}^{2}\right)$ if :

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

3. (a) Determine if the following matrix is positive definite or not :

$$
\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

(b) Let M and D be a metro city and a district town, respectively. Each year 10% of D 's population moves to M and 15% of M 's population moves to D , where the infrastructure is improving. What is the
long-term effect of this migration on the populations of M and of D ? Are they likely to stabilise or not? Give reasons for your answer.

$$
3 \frac{1}{2}
$$

4. (a) Obtain QR-decomposition for the matrix : 3

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(b) Let T be a linear operator on $\mathrm{C}^{n}, n>1$. Prove that the eigenvectors corresponding to distinct eigenvalues of T are linearly independent.
5. Which of the following statements are true and which are not? Give reasons for your answers. Marks will only be given for valid reasons : 10
(i) If λ is an eigenvalue of a linear operator T on \mathbf{R}^{n}, then $T-\lambda I$ is not one-one.
(ii) If A and B are $n \times n$ nilpotent matrices, then $A+B$ is nilpotent.
(iii) Two similar matrices have the same minimal polynomial.
(iv) There is no unitary matrix one of whose column is $\left[\begin{array}{c}2 \\ \frac{1}{2} \\ 0\end{array}\right]$.
(v) If A is a normal matrix, then A is nonsingular.

