No. of Printed Pages : 4

MMT-002

M. Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M. Sc. (MACS) Term-End Examination June, 2020 MMT-002 : LINEAR ALGEBRA

Time: $1\frac{1}{9}$ Hours

Maximum Marks : 25

Note: Question No. 5 is compulsory. Answer any three questions from 1 to 4. Calculators are not allowed.

1. Find the Jordan canonical form of :

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

Also find a matrix P so that $P^{-1}AP$ in Jordan form.

5

2. (a) Find the best least squares quadratic polynomial fit to the data below : 3

x	у
-1	.0
0	1
1	8
2	9

(b) Evaluate $\exp(A^2)$ if:

		[1	0	0	
•	A =	1	1	0	
		1	0	1	

(a) Determine if the following matrix is 3. positive definite or not : $1\frac{1}{2}$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

(b) Let M and D be a metro city and a district town, respectively. Each year 10% of D's population moves to M and 15% of M's population moves to D, where the infrastructure is improving. What is the

2

long-term effect of this migration on the populations of M and of D? Are they likely to stabilise or not? Give reasons for your answer. $3\frac{1}{2}$

4. (a) Obtain QR-decomposition for the matrix : 3

1	1	0]
1 1 0	0	0 1 1
0	1	1

- (b) Let T be a linear operator on C^n , n > 1. Prove that the eigenvectors corresponding to distinct eigenvalues of T are linearly independent. 2
- 5. Which of the following statements are true and which are not? Give reasons for your answers.
 Marks will only be given for valid reasons: 10
 - (i) If λ is an eigenvalue of a linear operator T on \mathbb{R}^n , then T - λ I is not one-one.
 - (ii) If A and B are $n \times n$ nilpotent matrices, then A + B is nilpotent.

P. T. O.

7000

- (iii) Two similar matrices have the same minimal polynomial.
- (iv) There is no unitary matrix one of whose column is $\begin{bmatrix} 2\\ 1\\ 2\\ 0 \end{bmatrix}$.
- (v) If A is a normal matrix, then A is nonsingular.

MMT-002