BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : 2 Hours]

[Maximum Marks : 50
Note: Question number 1 is compulsory. Answer any three questions from the rest.

1. (a) For funtction defined by: 4
$f(n)=5 n^{3}+6 n^{2}+7 n+8$; show that:
(i) $\quad f(n)=O\left(n^{3}\right)$
(ii) $\quad f(n) \neq O(n)$
(b) Write an algorithm to search the smallest number in a given array. Also calculate its time complexity.
(c) Draw all the spanning trees for the following weighted graph:

(d) For the given graph, write DFS traversal sequence from the node A :

2. (a) Sort the following list of elements using Quick sort. Also show intermediate steps of the operation.
$29,6,27,8,6,2,45,90$
(b) Define optimization problem. Give any two examples of optimization problem with explanation.
3. (a) Find the optimal solution to the following fractional Knapsack problem using Greedy Technique:
(i) No. of object $n=6$
(ii) Max. weight $=25$
(iii) Value of each item $=$

$$
\left(P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right)=(10,20,30,35,45,55)
$$

(iv) Weight of each item $=$
$\left(W_{1}, W_{2}, W_{3}, W_{4}, W_{5}, W_{6}\right)=(5,10,12,13,15,20)$
(b) Write recurrence relation for binary search algorithm.3
4. (a) Solve the following recurrence relation:

$$
T(n)=3 T(n / 2)+n
$$

(b) Find minimum cost spanning tree for the following graph using Kruskal's algorithm: 7

5. (a) Find Adjacency Matrix for the following graph:

(b) Find the complexity of following code:
int $P=100$;
while (P)

$$
\left[\begin{array}{c}
\{\text { For }(i=1 ; i<n ; i++) \\
\\
\text { SUM }[i]=P-1 ; \\
3-\quad P=P-1 ;
\end{array}\right.
$$

Make necessary assumptions required. 4
(c) Describe any two methods to solve recurrence relations.

