BACHELOR OF COMPUTER APPLICATION (BCA) (Revised)

Term-End Examination

BCS-012 : BASIC MATHEMATICS

Time : 3 Hours]
[Maximum Marks : 100
Note: Question number 1 is compulsory. Answer any three questions from remaining four questions.
1.
(a) Show that:

$$
\left|\begin{array}{lll}
b-c & c-a & a-b \\
c-a & a-b & b-c \\
a-b & b-c & c-a
\end{array}\right|=0
$$

(b) If $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$, show that:
$A^{2}-5 A+I=O$, where I and O are identity and null matrices respectively of order 2. 5
(c) Show that $3^{2 n}-1$ is divisible by 8 for each $n \in \mathbb{N}$.
(d) If α, β are roots of $x^{2}+a x+b=0$, find value of $\alpha^{4}+\beta^{4}$ in terms of a, b.
(e) If $x=a+b, y=c w^{2}+b w^{2}$ and $z=a w^{2}+b w$, show that $x y z=a^{3}+b^{3}$
(f) Show that:

is not a prime.
(g) If $y=3 \sin x+4 \cos x$, find $\frac{d^{2} y}{d x^{2}}$.
(h) Evaluate $\int x e^{x} d x$.

5
2. (a) If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$, where $i^{2}=-1$,
show that $(A+B)^{2}=A^{2}+B^{2}$.
(b) If $A=\left[\begin{array}{ccc}-1 & 2 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$, show that $A^{2}=A^{-1} . \quad 5$
(c) If $A=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]$ find $A B$ and
$B A$.
(d) Use principle of Mathematical induction to show that:

$$
\begin{equation*}
\frac{1}{2}+\frac{1}{2^{2}}+\ldots \ldots .+\frac{1}{2^{n}}<1 \quad \forall n \in \mathbb{N} \tag{5}
\end{equation*}
$$

3. (a) Find sum of all three digit numbers which are divisible by 7 .
(b) Use De Moivre's theorem to find $(1+\sqrt{3} i)^{3}$.
(c) Solve the inequality:
$\frac{4}{|x-2|}>5$
(d) Solve the equation:
$8 x^{3}-14 x^{2}+7 x-1=0$
if the roots are in G.P.
4. (a) If $y=\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}}$, find $\frac{d y}{d x}$.
(b) Show that:
$f(x)=\frac{1+x+x^{2}}{1-x+x^{2}}$
is a decreasing function on the interval $(1, \infty)$.
(c) Evaluate:

$$
\begin{equation*}
\int \frac{\left(a^{x}+b^{x}\right)^{2}}{a^{x} b^{x}} d x \tag{5}
\end{equation*}
$$

(d) Find the area bounded by the line $y=3+2 x$, x-axis and the ordinates $x=2$ and $x=3.5$
5. (a) Show that:

$$
\left[\begin{array}{lll}
\vec{b}+\vec{c} & \vec{c}+\vec{a} & \vec{a}+\vec{b}
\end{array}\right]=2\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c} \tag{5}
\end{array}\right]
$$

(b) Show that the lines:

$$
\begin{aligned}
& \frac{x-5}{4}=\frac{y-7}{-4}=\frac{z-3}{-5} \text { and } \\
& \frac{x-8}{4}=\frac{y-4}{-4}=\frac{z-5}{8} \text { intersect. }
\end{aligned}
$$

(c) Two tailors, A and B, eam Rs. 700 and Rs. 1000 per day respectively. A can stitch 6 shirts and 4 pants while B can stitch 10 shirts and 4 pants per day. How many days shall each have to work if it is desired to produce at least 60 shirts and 32 pants at a minimum labour cost? Also, calculate the least cost.

