00771

No. of Printed Pages: 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination, 2019

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 Hours]

[Maximum Marks : 50

(Weightage: 70%)

Note : Question No. 6 is compulsory. Attempt any four of the remaining questions. Use of calculator is not allowed. Notations as in the study material.

1. (a) Show that the linear map $(x, y) \mapsto (x + y, x - y)$ from $(\mathbb{R}^2, \|\cdot\|_1)$ to $(\mathbb{R}^2, \|\cdot\|_\infty)$ is an isometry.

[3]

- (b) If A is a bounded normal operator on a Hilbert space H then prove that || A*x || = ||Ax|| for all x ∈ H. Prove the converse also. [4]
- (c) Suppose M, N are closed subspaces of a Banach space X such that $X = M \oplus N$. Use the closed

MMT-006

(1)

[P.T.O.]

graph theorem to show that there is a bounded linear map P on X with the properties R(P) = M, N(P) = N and $P^2 = P$. [3]

- 2. (a) If X,Y are Banach spaces on $X \oplus Y$ define $\|(x,y)\| = \|x\|_X + \|y\|_Y$. Show that this gives a norm making $X \oplus Y$ into a Banach space. [4]
 - (b) Prove that the dual of c_0 is isometric to l^1 . [4]
 - (c) State the principle of Uniform boundedness.[2]
 - (a) If A is a bounded self-adjoint operator on a Hilbert space H, show that $||A|| = sup \{| < Ax, x > | : x \in H ||x|| = 1\}$ [4]
 - (b) Determine the orthonormal set in l² obtained by the Gram-Schmit orthonormalisation process applied to {u_n} where u_n = e₁ ++ e_n. [4]
 - (c) Using Hahn-Banach extension theorem show that a non-zero normed space X has a non-zero dual X¹. [2]
- 4. (a) Define the spectrum of an operator. Find an operator on C [0,1] whose spectrum is [0,2] [4]

MMT-006

3.

(2)

- (b) In L^2 [0,1], determine $\{1, t, t^2, \dots, \}^{\perp}$ [3]
- (c) Consider the shift operator $S: l^2 \rightarrow l^2$, given by $(x_1, x_2, \dots, x_n, \dots) \mapsto (0, x_1, x_2, \dots, x_n, \dots)$ Calculate $||s * c_1||$ and $||sc_1||$. [3]

(a) Let M be a proper closed subspace of a Hilbert space H and let x₀ ∈ H, x₀ ∉ M. Find a bounded linear functional f on H such that f(x₀) = 1 and f(y) = 0 for all y ∈ M. [3]

- (b) Show that l^{∞} is not separable and conclude that l^{1} is not reflexive. [4]
- (c) If T is a compact operator on a Banach space X, prove that T is also compact when x is given an equivalent norm. [3]
- State, with justification, whether the following statements
 are True or False : [5×2=10]
 - (a) l^2 is a proper subspace of l^3 .
 - (b) Eigen values of a self-adjoint operator are real.
 - (c) Hahn-Banach extensions on l¹ are unique.

MMT-006

5.

[P.T.O.]

- (d), M, N, N, are closed subspaces of a Banach space X and $X = M \oplus N = M \oplus N_1$. Then N=N₁.
- (e) There is a surjective, bounded linear map $T: C \rightarrow C_0$.

----- X -----

3