04852

No. of Printed Page : 4
MCS-033
MCA (REVISED)
Term-End Examination, 2019
MCS-033 : ADVANCED DISCRETE MATHEMATICS
Time: 2 Hours] [Maximum Marks: 50

Note : Question number 1 is compulsory. Attempt any three questions from the rest.
1.
(a) Find the generating function of:
$0,1,-2,4,-8 \ldots \ldots$
(b) The sum of degrees of all vertices in a graph G is equal to twice the number of edges in G. Prove this statement.
(c) Find the order and degree of the following recurrence relation. Also state are they homogeneous or non-homogeneous :

$$
\begin{equation*}
a_{n}=a_{n} a_{0}+a_{n-1} a_{1}+\cdots+a_{0} a_{n}(n \geq 2) \tag{i}
\end{equation*}
$$

(ii) $\quad a_{n}=\sqrt{a_{n-1}}+a_{n-2}^{2}$
(d) Define:
(i) Complete Graph
(ii) Regular Graph
(iii) Bipartite Graph
(e) Solve the recurrence relation $a_{n}=a_{n-1}+a_{n-2}$
with $a_{0}=0, a_{1}=1$.
(f) Draw the minimum spanning trees of the following graph:

2. (a) Solve the recurrence relation

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=7^{n}
$$

(b) Determine whether the graphs are isomorphic:

3. (a) Solve the recurrence relation :

$$
a_{n}-3 a_{n-1}-4 a_{n-2}=4^{n}
$$

(b) Show that C_{6} is bipartite and k_{3} is not bipartite.[5]
4. (a) Find the chromatic number of the given graph :
[2]

(b) Solve the recurrence relation:
[4]

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=0 \text { with } a_{0}=2, a_{1}=5
$$

(c) What is spanning tree ? Give example.
5. (a) Find Euler's path in the graph given below: [3]

(b) Solve:

$$
\begin{aligned}
& a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3} \\
& \text { with } a_{0}=2, a_{1}=5, a_{2}=15
\end{aligned}
$$

(c) What is the difference between an Hamiltonian circuit and Eulerian circuit?

