83142

No. of Printed Pages : 7

MCS-012

MCA (REVISED)/BCA (REVISED)

Term-End Examination

June, 2019

MCS-012 : COMPUTER ORGANIZATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time : 3 Hours

Maximum Marks : 100

(Weightage 75%)

Note : Question No. 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.

 (a) Perform the following : 6
 (i) Add (-35) and (-75) number in an 8bit register using signed 2's complement representation. Also indicate an overflow if any.

(A-7) P. T. O.

(A-7)

(ii) Convert binary 01001011 into octal and hexadecimal notation.

(iii) Write BCD equivalent of 256.

- (b) Simplify the following Boolean function in SOP form using K-map:
 F (A, B, C, D) = Σ (0, 3, 7, 9, 13, 15, 18, 21) and draw the logic diagram.
- (c) Given the 8 bit value 10101101 stored in a register, what are microinstructions required in order to :
 - (i) Clear to 0 the first 4 bits
 - (ii) Set to 1 the last 4 bits
 - (iii) Complement the first 4 bits
- (d) Assume R2 register having suitable values
 to perform the micro-operations. Discuss
 the importance of flags in a computer
 system.

(e) Draw the block diagram of hardwired control unit and explain how does it work ?- 5

- (f) Explain the use of large register file for RISC machines with the help of an example.
- (g) Write an 8086 assembly language program to add five byte numbers stored in an array. The result should be stored in AX register.
- (h) Why does DMA have priority over the CPU when both request a memory transfer of data?
- 2. (a) How is execution of an instruction done ?
 Draw the flow chart of the instruction cycle.
 - (b) What are the key features of Von-Neumann Architecture ? 5

(A-7) P. T. O.

(c) Describe through an example how does a two-way set associative cache mapping scheme work.

- (d) Draw an excitation table for RS flip-flop. 4
- 3. (a) Draw a 4-bit parallel register using D flipflops and explain its operation. 6
 - (b) Categorize the following 8086 assembly language instructions to the instruction types given below :

Assembly

Instructions

(2)

(1) Move (i) Data processing

instruction

Instruction Type

TRAP (ii) Data transfer

instruction

(A-7)

of

· (3)	BRN		(i	ii)	Privileges	
x ·					instruction	
(4)	DIV		(i	v)	Program con	trol
•	· .				instruction	
(5)	STO	RE				
(6)	XOR				•	
List	the	impo	ortant	ch	aracteristics	of
instruction set of a basic computer. 4						
What	is	the	differ	enœ	e between	the
following operations ? 4						
(i) Arithmetic shift and logic shift						
1. A.						

(c)

(d)

[5]

(ii) Logic shift and circular shift

Suppose the value of the registers R_1 and (a) 4. R₂ are : 6

> $R_1 = 1101 \ 0110$ $R_2 = 1111 \ 1001$

(A-7) P. T. O.

Perform the following operations on R_1 using R_2 :

- (i) Selective Complement
- (ii) Selective Set
- (iii) Selective Clear
- (b) What is a multiplexer ? Why is it needed ?
 Draw the logic diagram and truth table for a 4 × 1 multiplexer.
- (c) Explain the following 8086 microprocessor addressing modes with the help of an example for each:

(i) Indexed

- (ii) Register Indirect
- (iii) Direct
- (d) Discuss the use of a device driver. 2
- 5. (a) What are the constraints with MOV instruction of 8086 microprocessor? 3
 - (b) List all the features of RISC architectures.

(A-7)

6

(d) What is performance degradation in a pipeline ? Explain any *two* possible hardware schemes that can be used in an instruction pipeline in order to minimize the performance degradation caused by instruction branching.

MCS-012

10,000

(A-7)