BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination
 June, 2019

DロESZ

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Use of scientific calculator is permitted.

1. (a) (i) Round-off the following numbers to four significant figures :
38.46235; 0.70029; 0.0022218 and $2 \cdot 36425$
(ii) If $y=4 \cos x-6 x$, find the percentage error in y at $x=1$, given $\Delta x=0.005$.
(b) If $\mathrm{N}=\frac{4 \mathrm{x}^{2} \mathrm{y}^{3}}{\mathrm{z}^{4}}$ and errors in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are respectively $0 \cdot 1,0.05$, and $0 \cdot 15$, compute the maximum relative error in N when $\mathrm{x}=\mathrm{y}=\mathrm{z}=1$.
(c) (i). Write the following system of linear equations in matrix form :

$$
\begin{aligned}
& 9 x+14 y=37 \\
& -11 x+6 y=1
\end{aligned}
$$

(ii) Find an interval in which the following equation has a root : . $2+3=5$

$$
x^{3}-2 x-5=0
$$

(d) Prove that

$$
\Delta=\frac{1}{2} \delta^{2}+\delta \sqrt{1+\frac{1}{4} \delta^{2}} .
$$

(e) The following table gives corresponding values of x and y. From the difference table, express \mathbf{y} as a function of \mathbf{x}.

x	0	1	2	3	4
y	3	6	11	18	27

(f) Find a real root of the following equation correct to 3 decimal places using bisection method :

$$
x^{4}-x-9=0
$$

2. (a) Use Lagrange's interpolation formula to find y where $x=5$, from the following data :

x	0	1	3	8
y	1	3	13	123

(b) Find a real root of the following equation :

$$
x^{x}=\cos x
$$

correct to three decimal places using iterative method.
(c) The speed v metres per second of a car, t seconds after it starts, is shown in the following table :

t	v
0	0
12	3.60
24	10.08
36	$18 \cdot 90$
48	21.60
60	18.54
72	10.26
84	$5 \cdot 40$
96	4.50
108	$5 \cdot 40$
120	9.00

Using Simpson's $\frac{1}{3}$ rd rule, find the distance travelled by the car in 2 minutes. $3 \times 5=15$
3. (a) Find a real root of the following equation :

$$
x^{3}-5 x+3=0
$$

correct to three decimal places using Newton-Raphson's method.
(b) Find a root of the following equation :

$$
x \log _{10} x=1 \cdot 2
$$

correct to three decimal places using Regula Falsi method.
(c) Solve the following system of linear equations by Cramer's rule :

$$
\begin{aligned}
& 10 x+y+z=12 \\
& x+10 y+z=12 \\
& x+y+10 z=12
\end{aligned}
$$

4. (a) Solve the following system of linear equations by. Gauss elimination method :

$$
\begin{aligned}
& x+2 y+z=8 \\
& 2 x+3 y+4 z=20 \\
& 4 x+3 y+2 z=16
\end{aligned}
$$

(b) Solve the following system of linear equations by Gauss-Seidel iterative method:

$$
\begin{aligned}
& 8 x+y+z=8 \\
& 2 x+4 y+z=4 \\
& x+3 y+5 z=5
\end{aligned}
$$

(c) Use Jacobi's iteration method to solve the following system of equations :
$3 \times 5=15$

$$
\begin{aligned}
& 5 x+2 y+z=12 \\
& x+4 y+2 z=15 \\
& x+2 y+5 z=20
\end{aligned}
$$

5. (a) Find a real root of the equation

$$
x^{3}-4 x-9=0
$$

correct to three decimal places by the Secant method.
(b) Compute y for $x=1 \cdot 1$ and $x=1 \cdot 2$, if

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}, \text { if } y(1)=2
$$

(c) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$, with $y=1$ for $x=0$.

Find y approximately for $x=0.1$ by Euler's method. (Five steps i.e. take $h=0 \cdot 02$). $3 \times 5=15$

