BACHELOR OF COMPUTER APPLICATIONS (BCA) (PREREVISED)
 Term-End Examination June, 2019

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 Hours \quad Maximum Marks : 75
Note :Question No. 1 is compulsory. Attempt any three questions from Question Nos. 2 to 6. Use of calculator is permitted.

1. (a) Compute the values of x and y lying between 0° and 180°, if :

$$
\sin (x-y)=\cos (x+y)=\frac{1}{2}
$$

(b) Find the modulus and argument of $z=\frac{1+3 i}{3+4 i}$.
(c) The mean of the first three terms is 14 and the mean of next two terms is 18 . Find the mean of all the five terms.
(d) Determine the equation of a line passing through the point ($-1,-2$) and with slope $\frac{4}{7}$.
(e) If the A. M. (Arithmetic Mean) and H. M. (Harmonic Mean) of two numbers are 9 and 4 respectively, then find out their G.M. (Geometric Mean).
(f) Determine the equation of a circle if its centre is $(8,-6)$ and which passes through the point $(5,-2)$.
(g) Find out the value of : 3

$$
i^{57}+\frac{1}{i^{25}} .
$$

[Here $i=\sqrt{-1}$]
(h) Evaluate :

$$
\int_{0}^{\frac{\pi}{2}} \frac{(\sin x+\cos x)^{2}}{\sqrt{1+\sin 2 x}} d x .
$$

(i) Prove that:

$$
\frac{1+\sin \theta}{1-\sin \theta}=(\sec \theta+\tan \theta)^{2} .
$$

(j) Evaluate $\lim _{x \rightarrow 2} \frac{3 x^{2}+4 x}{2 x+1}$.

3
(k) Find the root of quadratic equation:

3

$$
3 x^{2}-4 x-4=0
$$

(l) Determine the equation of a line passing through the points $(3,4)$ and $(2,-1)$.
(m) Write Lagrange's mean value theorem and Rolle's theorem.
(n) Find the distance between the line $3 x-4 y+12=0$ and the point $(4,1)$. 3
(o) If $x^{y}=e^{x-y}$, then prove that: 3

$$
\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}} .
$$

2. (a) In a group of persons, each one knows Hindi or Tamil. If 100 know Hindi, 50 know Tamil and 30 know both, how many persons are there in the group?
(b) If $y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots . . \text { to } \infty}}}$, then prove that:

$$
\frac{d y}{d x}=\frac{\cos x}{2 y-1} .
$$

(c) If $y=(\tan x)^{\log x}$, then find $\frac{d y}{d x}$.
3. (a) If $\cos \theta=\frac{3}{5}$, then find the value of $\frac{\sin \theta \tan \theta+1}{2 \tan ^{2} \theta}$.
(b) What is the equation of the line which passes through $(4,-5)$ and is parallel to the line $3 x+4 y+5=0$.

3
(c) What is the eccentricity of the ellipse whose length of minor axis is equal to the distance between the two foci?
4. (a) Evaluate :

3

$$
\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x}
$$

(b) Evaluate :

$$
\int x^{\frac{2}{3}} d x
$$

(c) If $\tan \theta+\sec \theta=p$, then prove that:

$$
\sec \theta=\frac{p^{2}+1}{2 p}
$$

5. (a) Find out the area of the region bounded by the curve $y=x-x^{2}$, between $x=0$ and $x=1$. 3
(b) The length of the shadow of a tree is $10 \sqrt{3}$ m , when the angle of elevation of the sun is 60°. What is the length of the shadow of the tree when the angle of elevation of the sun in 30° ?
(c) Find the equation of the tangent of the circle $x^{2}+y^{2}=9$ which are parallel to $3 x+4 y=0$.
6. (a) If $\frac{\log x}{\log 5}=\frac{\log 36}{\log 6}=\frac{\log 64}{\log y}$, what are the values of x and y ?
(b) Find the vertex, focus and directrix of the parabola :

$$
4 y^{2}+12 x-12 y+39=0
$$

(c) Find the equation of an ellipse whose focus is $(1,0)$, the directrix is $x+y+1=0$, and eccentricity is equal to $\frac{1}{\sqrt{2}}$. 4

