BACHELOR OF COMPUTER APPLICATION

(BCA) (REVISED)

Term-End Examination, 2019

BCS-012 : BASIC MATHEMATICS

Time: $\mathbf{3}$ Hours]
[Maximum Marks: 100
Note: Question No. 1 is compulsory. Attempt any three questions from the remaining questions.

1. Attempt all parts :
(a) Show that:

$$
\left|\begin{array}{lll}
1 & a b & (a+b) c \\
1 & c a & (c+a) b \\
1 & b c & (b+c) a
\end{array}\right|=0
$$

(b) If $A=\left(\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right)$ and $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find

$$
\begin{equation*}
A^{2}-5 A+6 I_{2} . \tag{5}
\end{equation*}
$$

(c) Show that 8 divides $3^{2 n}-1 \forall n \in \mathrm{~N}$.
(d) If a, b, c are pth, qth and rth term of an A.P. respectively, show that :

$$
(q-r) a+(r-p) b+(p-q) c=0
$$

(e) If $1, \mathrm{w}, \mathrm{w}^{2}$ are cube roots of unity, find:

$$
\begin{equation*}
\left(1+w+3 w^{2}\right)^{6}+\left(1+2 w+2 w^{2}\right)^{6} \tag{5}
\end{equation*}
$$

(f) If α, β are roots of $x^{2}-4 a x+4 a^{2}-9=0$ and $\alpha^{2}+\beta^{2}=26$, find a.
(g) If $y=\ln \left(x+\sqrt{x^{2}+1}\right)$, find $\frac{d y}{d x}$.
(h) Evaluate $\int \sqrt{x}(3+2 x) d x$.
2. (a) If $A=\left(\begin{array}{ccc}3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -2 & 1\end{array}\right)$, show that $\mathrm{A}(\operatorname{adj} \mathrm{A})=0$. [5]
(b) If $A=\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 4 & 7 \\ 3 & 2 & 1\end{array}\right)$, show that A is row equivalent to I_{3}.
(c) If $A=\left(\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right)$ and
$B=\left(\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right)$, show that $A B=6 I_{3}$. Use it to solve the system of linear equations :

$$
\begin{aligned}
& x-y=1 \\
& 2 x+3 y+4 z=7 \\
& y+2 z=1
\end{aligned}
$$

3. (a) Find the sum of all the integers between 100 and 700 which are divisible by 8 .
(b) Use DeMoivre's theorem to obtain $(1+i)^{8}$
(c) Solve $x^{3}-9 x^{2}+23 x-15=0$, two of the roots are in the ratio $3: 5$.
(d) Solve $\frac{3 x-1}{x+2}<3, x \in \mathrm{R}$
4. (a) Determine the interval in $f(x)=e^{1 / x}, x \neq 0$, is decreasing.
(b) Evaluate $\int \frac{e^{2 x}}{e^{x}+1} d x$
(c) Find the area bounded by $y=\sqrt{x}$ and $y=x$.5]
(d) Using integration find the length of $y=3+x$ from $(1,4)$ to $(3,6)$.
5. (a) Show that:

$$
\left[\begin{array}{lll}
\ddot{a}+\ddot{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}
\end{array}\right]=2\left[\begin{array}{ll}
\vec{a} \vec{b} & \vec{c} \tag{5}
\end{array}\right]
$$

(b) Find shortest distance between

$$
\begin{align*}
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\hat{j}+\mathrm{t}(2 \hat{\mathrm{i}}+\hat{\mathrm{k}}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}+s(\hat{i}+\hat{j}-\hat{k}) \tag{5}
\end{align*}
$$

(c) Right moves dance academy wishes to run two dance courses - Hip-hop and Contemporary. Fee for Hip-hop is Rs. 300 per hour and for contemporary it is Rs. 250 per hour. The academy can accommodate at most 15 in hiphop and at most 20 in contemporary. If the total number of students cannot exceed 30 , find the maximum revenue academy can get per hour.

