No. of Printed Pages: 4

RBC-003

Ph.D. IN BIOCHEMISTRY (PHDBC)

Term-End Examination

00175

June, 2018

RBC-003 : BIOCHEMICAL AND MOLECULAR BIOLOGICAL TECHNIQUES

Time: 3 hours

Maximum Marks: 100

Note: The question paper consists of three sections, A, B and C. Answer all the questions.

SECTION A

1. (a) Define the following terms:

 $5\times2=10$

- (i) Homogenisation
- (ii) Distribution Coefficient (K_d)
- (iii) pH electrode
- (iv) Gene knockout
- (v) SDS-PAGE

- (b) Write one application for each of the following: $5\times1=5$
 - (i) Weighing balance
 - (ii) pH meter
 - (iii) Primer
 - (iv) Liquid Nitrogen
 - (v) RPMI
- (c) Differentiate between Molarity and Normality. How will you prepare a 100 mL solution of 0.5 M glucose?

 (Molecular weight = 180)

5

SECTION B

Ans	wer any five questions. $5 \times 6 = 30$
2.	What is sterilization? Briefly describe the various sterilization techniques used in cell culture.
3.	Write the principle and applications of gel filtration chromatography.
4.	Define pH. Explain the role of biological buffers in maintaining the pH.
5.	Differentiate between real time PCR and RT-PCR. 3+3=6
6.	What is DNA sequencing? Name different methods for DNA sequencing and briefly describe any one.
7.	Write the principle of any <i>two</i> of the following techniques: $2\times 3=6$ (a) ELISA (b) Electrophoresis (c) Gene cloning
8.	What is the role of growth medium? Give two examples each for the growth media used for microbial and animal cell cultures.

SECTION C

Answer any five questions. $5\times10=50$					
9.	Desig fract	gn an experiment for subcell ionation from an animal tissue.	ular <i>10</i>		
10.		ain the principle, procedure and applicat as Liquid Chromatography.	ions <i>10</i>		
11.		Describe Gel retardation assay and DNAse footprinting with suitable diagrams.			
12.	Describe the principle and applications of FACS. 10				
13.	can	ain how molecular weight of a DNA san be determined using agarose rophoresis.	aple gel 10		
14.	Give an account on cloning vectors with suitable examples.				
15.	Write short notes on any two of the following: $5+5=$				
	(a)	Growth curve of <i>Escherichia coli</i> measurement of doubling time	and		
	(b)	Immunoelectrophoresis			
	(c)	Microarray	÷		
	(d)	Western Blotting			