# Ph.D. IN STATISTICS (PHDSTAT) 

Term-End Examination
June, 2018

## RST-004 : ADVANCES IN STATISTICS

Time : 3 hours .Maximum Marks : 100

Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7. Non-programmable scientific calculator is allowed. Symbols have their usual meanings.

1. (a) State whether the following statements are True or False. Give reasons in support of your answers: $4 \times 2=8$
(i) The form of Entropy Loss Function is

$$
L(\Delta) \propto \Delta^{\mathrm{p}+1}-\log \Delta^{\mathrm{p}}-1
$$

where $\Delta=\hat{\theta} / \theta$.
(ii) If $\mathrm{X} \sim \exp (\theta)$ and prior distribution of $\theta$ is Gamma $(\alpha, \beta)$ distribution, then posterior distribution of $\theta$ is Gamma $\left(n+\alpha, \sum_{i=1}^{n} x_{i}+\beta\right)$ distribution.
(iii) In regression analysis, if $\mathrm{SS}_{\text {Reg }}=2.82$ and $\mathrm{SS}_{\text {Res }}=4 \cdot 26$, then coefficient. of determination is 0.398 .
(iv) For testing the significance of a multiple regression model, $t$-test is used.
(b) Differentiate between the following, with suitable examples : $3 \times 4=12$
(i) Forward and Backward selection methods
(ii) Residual and Normal probability plots
(iii) Linear and 0-1 loss functions
2. (a) Define prior and posterior distributions in Bayesian analysis.
(b) Let $\mathrm{X}_{1}$ and $\mathrm{X}_{2}$ be random samples drawn from $N(\theta, 1)$. If prior distribution of $\theta$ is $\mathrm{N}(\mu, 1)$, then obtain $10+5$
(i) Posterior distribution of $\theta$.
(ii) Bayes estimator of $\theta$ under precautionary loss function.
3. (a) Explain loss function. Define 8
(i) Squared error loss function
(ii) Linear exponential loss function
(b) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $\exp (\theta)$ distribution and prior distribution of $\theta$ be Gamma ( $\alpha, \beta$ ) distribution. Obtain Bayes estimate of $\theta$ under
(i) Squared error loss function
(ii) Asymmetric loss function 12
4. The fuel consumption and the average speed of a car were recorded from 10 trips of the same distance covered under similar road conditions using same car. The data are given below :

| Trip | Petrol Consumption <br> (in litres) | Speed <br> $(\mathrm{km} / \mathrm{hr}$ ) |
| :---: | :---: | :---: |
| 1 | 14 | 50 |
| 2 | 10 | 40 |
| 3 | 15 | 45 |
| 4 | 16 | 55 |
| 5 | 11 | 35 |
| 6 | 16 | 60 |
| 7 | 12 | 55 |
| 8 | 14 | 50 |
| 9 | 12 | 40 |
| 10 | 10 | 30 |

(a) Fit a regression model.
(b) Test whether speed has any significant effect on petrol consumption at $5 \%$ level of significance.
(c) Find $95 \%$ confidence interval for the slope. It is given that $10+6+4$

$$
\begin{aligned}
\mathrm{t}_{(9), 0 \cdot 05} & =1 \cdot 833, \mathrm{t}_{(9), 0 \cdot 025}=2 \cdot 262, \\
\mathrm{t}_{(8), 0 \cdot 05} & =1 \cdot 860, \mathrm{t}_{(8), 0 \cdot 025}=2 \cdot 306 .
\end{aligned}
$$

5. Describe various assumptions in regression
analysis.
6. (a) Write any five properties of regression coefficients.
(b) Describe Jeffrey's Prior. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from exponential distribution with mean $1 / \theta$. Construct Jeffrey's Prior. 10
7. Write detailed notes on any two of the following : $10+10$
(a) Residual Analysis
(b) Use of ANOVA in Regression Analysis
(c) Bayes Theorem
