Ph.D. IN STATISTICS (PHDSTAT)

Term-End Examination

00175

June, 2018

RST-004: ADVANCES IN STATISTICS

Time: 3 hours Maximum Marks: 100

Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7.

Non-programmable scientific calculator is allowed.

Symbols have their usual meanings.

- (a) State whether the following statements are
 True or False. Give reasons in support of
 your answers:
 4×2=8
 - (i) The form of Entropy Loss Function is $L(\Delta) \propto \Delta^{p+1} \log \Delta^p 1$ where $\Delta = \hat{\theta}/\theta$.
 - (ii) If $X \sim \exp(\theta)$ and prior distribution of θ is Gamma (α, β) distribution, then posterior distribution of θ is Gamma

$$(n + \alpha, \sum_{i=1}^{n} x_i + \beta)$$
 distribution.

		(iii) In regression analysis, if $SS_{Reg} = 2.82$ and $SS_{Res} = 4.26$, then coefficient of determination is 0.398.
		(iv) For testing the significance of a multiple regression model, t-test is used.
	(b)	Differentiate between the following, with suitable examples: $3\times4=12$
		(i) Forward and Backward selection methods
		(ii) Residual and Normal probability plots
		(iii) Linear and $0-1$ loss functions
,	(a)	Define prior and posterior distributions in
		Bayesian analysis. 5
	(b)	Let X ₁ and X ₂ be random samples drawn
		from N(θ , 1). If prior distribution of θ is
		$N(\mu, 1)$, then obtain 10+5
		(i) Posterior distribution of θ .
		(ii) Bayes estimator of θ under precautionary loss function.
•	(a)	Explain loss function. Define 8
	` '	(i) Squared error loss function
		(ii) Linear exponential loss function
	(b)	Let X_1, X_2, \dots, X_n be a random sample from
		$exp(\theta)$ distribution and prior distribution of
		θ be Gamma (α , β) distribution. Obtain
		Bayes estimate of θ under
		(i) Squared error loss function
		(ii) Agreement in logg function 19

2. (a)

3. (a)

4. The fuel consumption and the average speed of a car were recorded from 10 trips of the same distance covered under similar road conditions using same car. The data are given below:

Trip	Petrol Consumption (in litres)	Speed (km/hr)
1	14	50
2	10	40
3	15	45
4	16	55
5	11	35
6	16	60
7	12	55
8	14	50
9	12	40
10	10	30

- (a) Fit a regression model.
- (b) Test whether speed has any significant effect on petrol consumption at 5% level of significance.
- (c) Find 95% confidence interval for the slope. It is given that 10+6+4

$$t_{(9),0\cdot05} = 1\cdot833, t_{(9),0\cdot025} = 2\cdot262,$$

$$t_{(8),0\cdot05} = 1\cdot860, t_{(8),0\cdot025} = 2\cdot306.$$

5.	Describe various assumptions in regression analysis.	20
6.	(a) Write any five properties of regression coefficients.	10
	(b) Describe Jeffrey's Prior. Let X_1, X_2, \ldots, X_n be a random sample from exponential distribution with mean $1/\theta$. Construct	
	Jeffrey's Prior.	10
7.	Write detailed notes on any two of the following:	-10
	(a) Residual Analysis	

- $(b) \quad Use \ of \ ANOVA \ in \ Regression \ Analysis$
- (c) Bayes Theorem