No. of Printed Pages : 4

MCH-004

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination June, 2018

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Time : 3 hours

01375

Maximum Marks: 75

Note : Answer any **five** questions. All questions carry equal marks.

- 1. (a) Distinguish between e.m.f. and potential difference.
 - (b) Explain why pH of an aqueous solution lies between 0 and 14. Does change in temperature of solution, alter its observed pH ? State reason.
 - (c) Calculate the mass of ²⁴NaCl in solution having activity of 5.7 me_i; $t_{1/2}$ of ²⁴₁₁Na is 15 h.
- **2.** (a) Explain any *two* of the following :
 - (i) Alkaline error
 - (ii) Acid error
 - (iii) Junction potential

MCH-004

1

P.T.O.

5

5

5

- (b) Define overvoltage. List its importance.
- (c) Calculate the time taken to deposit 0.50 g of silver from a solution through which current of 0.50 amps flows at 80% efficiency. (At. mass of Ag = 108)
- **3.** (a) Explain, why it is necessary to add a small amount of a surface active substance during measurement of diffusion current. Give example.
 - (b) What are the common sources of error in thermogravimetric analysis ? Discuss how these errors can be prevented.
 - (c) What is the principle of Neutron Activation Analysis ? Explain how the following are responsible for higher sensitivity of NAA.
 - (i) Neutron absorption cross section, σ
 - (ii) Neutron flux, ϕ
- 4. (a) Draw a plot between P(n) and mean value counts, \overline{x} . Name this plot and state its use/importance.
 - (b) Describe the essential features of a Calomel electrode. Write half cell reaction and its use in pH-metry.
 - (c) Calculate the equilibrium constant for the reaction between Fe(II) and Ce(III).

 $(E^{\circ} \text{ Fe}^{3+}/\text{Fe}^{2+} = 0.771 \text{ V} \text{ and}$ $E^{\circ} \text{ Ce}^{4+}/\text{Ce}^{3+} = 1.70 \text{ V}).$

MCH-004

2

5

5

5

5

5

5

5

- 5. (a) Distinguish between Voltametry and Polarography.
 - (b) A conductivity cell is filled with a solution of 0.0100 M KCl at 298 K. It has a conductivity of 0.001409 Ω^{-1} cm⁻¹ and resistance of 161.8 Ω . When this cell is filled with a 0.0050 M NaOH solution, it has a resistance of 190 Ω at 298 K. Calculate cell constant, and molar conductivity of NaOH solution.
 - (c) Draw a schematic diagram showing a three electrode polarograph. Name each electrode and mention its function.
- 6. (a) How can non-polarographic active groups be determined polarographically ? Give two examples.
 - (b) Draw a DTA plot of a mixture containing three organic components. Illustrate how m.p. of each component can be determined.
 - (c) State the advantages of using a mercury cathode in coulometric analysis at controlled potential.
- 7. (a) What is the principle of Isotope Dilution Analysis ? How does substoichiometric isotope dilution analysis differ from the parent technique ?

3

MCH-004

5

P.T.O.

5

5

5

5

- (b) Which of the two methods DTA or DSC, will you prefer for quantitative analysis ? State reasons in support of your choice.
- (c) Describe isothermal method used for kinetic studies of solid state decomposition reaction. Give expression for calculating the order of reaction.
- 8. (a) Explain principle of amperometric titrations, with two examples.
 - (b) Discuss the role of tartrate in electrogravimetric determination of Cu, Bi, Pb and Sn.
 - (c) Explain the principle of Anodic stripping voltametry. State the advantages of this technique.

MCH-004

1,500

5

5

5

5