No. of Printed Pages: 6

MMTE-007

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

00575

June, 2018

MMTE-007 : SOFT COMPUTING AND ITS APPLICATIONS

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note :

- (i) Question no. 7 is compulsory.
- (ii) Attempt any **four** questions from questions no. 1 to 6.
- (iii) Use of non-programmable scientific calculator is allowed.
- 1. (a) Given the two fuzzy sets

$$A = \left\{ \frac{1}{1 \cdot 0}, \frac{0.75}{1 \cdot 5}, \frac{0.3}{2 \cdot 0}, \frac{0.15}{2 \cdot 5}, \frac{0}{3 \cdot 0} \right\}$$

B = $\left\{ \frac{1}{1 \cdot 0}, \frac{0.6}{1 \cdot 5}, \frac{0.2}{2 \cdot 0}, \frac{0.1}{2 \cdot 5}, \frac{0}{3 \cdot 0} \right\}$
Find the following :
(i) A \cup B

(ii) $\mathbf{A} \cap \mathbf{B}$

(iii) $\mathbf{A} \cap \mathbf{B}$

$$(\mathbf{iv}) \mid \mathbf{A} \cap \overline{\mathbf{A}}$$

MMTE-007

P.T.O.

3

1

(b) Calculate the net input to the output neuron for the network shown below. Here b is the bias included in the network.

- (c) Implement AND NOT function using McCulloch-Pitts neuron.
- 5

2

2. (a) Consider the following travelling salesman problem involving 10 cities :

Parent 1 :	Α	B	С	D	E	F	G	н	Ι	J
Parent 2 :	C	D	Е	Α	B	Ι	J	Η	G	F

Determine the children solution using

4

- Order crossover # 1, where two crossover sites are at positions 4th and 8th.
- (ii) Order crossover # 2, for selected positions3, 5, 7, 9 as key positions.

MMTE-007

Determine the new cluster centre, using Fuzzy C-Mean (FCM) algorithm. Perform only one iteration. The relevant data is given below :

X₁ \mathbf{X}_2 X₃ Point X_4 X_5 f_1 1 3 5 7 9 f_2 11 8 12 4 6

(i) Data set for features f_1 and f_2 :

(ii) The number of clusters are 2 and the value of parameters which influence membership grade (m) is 2.

(iii) The initial cluster centres are $v_1 = (6, 6)$ and $v_2 = (11, 11)$.

(a) Perform the following for the Kohonen self-organizing feature map with weights, given below.

Find the cluster unit Y_j closest to the input vector (0.2, 0.4). Also find the new weights for unit Y_j .

Use learning rate of 0.2 and square of the Euclidean distance to find the cluster unit.

(b) Discuss the XOR problem. MMTE-007 3

3 P.T.O.

7

6

3.

(b)

4. (a) Find the alpha (α) cut relation for $\alpha = 0.2, 0.4, 0.7$ and 0.9 on the fuzzy relation R given as

	0.5	0.2	0.7	1	0.9
n	0.3	0.5	0.7	1	0.8
κ =	0.4	0.6	0.8	0.9	0.4
	0.9	1	0.8	0.6	0.4

(b) Find the new weights, using Back-Propagation network, for the network shown below. The network is presented with the input pattern [- 1, 1] and target output is + 1. Use learning rate of 0.25 and bipolar sigmoidal activation function.

MMTE-007

4

2

8

- 5. (a) Differentiate between Classical and Fuzzy clustering with example.
 - **(b)**

Generate the population in the next iteration using Roulette-Wheel Criterion.

Variable No. K	1	2	3	4	5
Fitness Value $\mathbf{F_k}$	3∙5	4 ·6	5	2·8	1.8

(c)

6.

Apply single point crossover on the following binary strings and generate two offsprings

 $A \rightarrow 0 1 1 0 1 0 0 1 0 1$

 $B \rightarrow 0100110010$

Consider 4th bit as the crossover site.

2

3

3

4

3

5

(a) Show that a multi-layer network with linear transfer function is equivalent to a single layer linear network.

- (b) Write the schema for the gene sequence {0 1 1 1 0 0 0} and {1 1 1 0 0 1 1}.
 Find the length and order of the schema.
- (c) The input to a single-input neuron is 2.0, its weight is 2.3 and its bias is -3.
 - (i) What is the net input to the transfer function?
 - (ii) What is the neuron output for the following transfer function :
 - (a) Hard Limit

(b) Linear

(c) Log-Sigmoid

MMTE-007

P.T.O.

- 7. State, giving reasons, whether the following statements are *True* or *False*: $5 \times 2=10$
 - (a) The cardinality of fuzzy sets on any universe is finite.
 - (b) Laws of excluded middle are not valid for fuzzy sets.
 - (c) The Self Organizing Map (SOM) is unsupervised learning technique.
 - (d) If $w(k_0) = w(k_0 + 1) = w(k_0 + 2)$, then perceptron is non-linear separable.
 - (e) The length of chromosomes to determine maximum value of the set

 $S = \{x \mid 0 \le x \le 4096\}$ is 10.

MMTE-007

1,000