No. of Printed Pages : 3

MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

June, 2018

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours

Maximum Marks: 50

- Note: Answer any four questions out of questions no. 1 to 5. Question no. 6 is compulsory. Calculators are not allowed.
- 1. (a) Construct a field consisting of 9 elements. Find the inverses of all its non-zero elements.
 - (b) What is a Mersenne Prime ? Give an example, with justification.
 - (c) Describe the Linear Congruential Generator for generating random numbers. Under what conditions do we get the maximal period?
- 2. (a) Determine the orders of all the elements in Z_{30}^* . Hence, determine whether this group is cyclic or not.

MMTE-006

5

P.T.O.

5

2

3

1

(b) Draw the LFSR circuit for the following recurrence relation :

 $x_{n+3} = x_{n+2} + x_n \pmod{2}$

Also write down the characteristic polynomial and check whether it is primitive or not.

5

8

2

4

4

3.

(a) Suppose Bano chooses p = 73, g = 5, x = 59, and publishes the public key (73, 5, 59) for the ElGamal crypto system. Rama wants to send the message M = 15 to Bano. She chooses the secret value k = 3. What will Bano receive from Rama ? Decrypt the encrypted message received by Bano.

- (b) Explain collision resistance and second pre-image resistance properties of the hash function.
- 4. (a) Define the following ciphers with an example of each :
 - (i) Simple Substitution Ciphers;
 - (ii) Polyalphabetic Substitution Ciphers.
 - (b) Representing

 $F_2 8 = F_2[x] / \langle g(x) \rangle,$ where $g(x) = x^8 + x^4 + x^3 + x + 1$,

show that the following bytes

10001100 and 11110111

are inverses of each other in $\mathbf{F}_2 \mathbf{8}$.

MMTE-006

2

- (c) Check whether $(x^3 + 1)$ is irreducible or not over \mathbf{F}_5 .
- 5. (a) Bano has published the public parameters (119, 11) for her signature using the RSA digital signature algorithm. Calculate her signature for the message M = 10.
 - (b) Decrypt the ciphertext

OGHNQXDBGGDBBRR

encrypted with Vigenère cipher using the key WARS.

3

7

2

- 6. Which of the following statements are *True*, and which are *False*? Justify your answers. 10
 - (a) $35^6 \equiv 1 \pmod{37}$.
 - (b) \mathbf{F}_{11}^* is a cyclic group.
 - (c) Vigenère cipher is a transposition cipher.
 - (d) The powers of 2 modulo p are strictly increasing for any prime p.
 - (e) In an RSA system with modulus n, finding the factors of n is equivalent to finding $\phi(n)$.

MMTE-006

1,000

3