M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

$\square \square 5 \square$ Term-End Examination June, 2018

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50

Note: Answer any four questions out of questions no. 1 to 5 . Question no. 6 is compulsory. Calculators are not allowed.

1. (a) Construct a field consisting of 9 elements. Find the inverses of all its non-zero elements.5
(b) What is a Mersenne Prime ? Give an example, with justification.2
(c) Describe the Linear Congruential Generator for generating random numbers. Under what conditions do we get the maximal period?
2. (a) Determine the orders of all the elements in \mathbf{Z}_{30}^{*}. Hence, determine whether this group is cyclic or not.
(b) Draw the LFSR circuit for the following recurrence relation :

$$
x_{n+3}=x_{n+2}+x_{n}(\bmod 2)
$$

Also write down the characteristic polynomial and check whether it is primitive or not.
3. (a) Suppose Bano chooses $p=73, g=5, x=59$, and publishes the public key $(73,5,59)$ for the ElGamal crypto system. Rama wants to send the message $M=15$ to Bano. She chooses the secret value $k=3$. What will Bano receive from Rama ? Decrypt the encrypted message received by Bano.
(b) Explain collision resistance and second pre-image resistance properties of the hash function.
4. (a) Define the following ciphers with an example of each :
(i) Simple Substitution Ciphers;
(ii) Polyalphabetic Substitution Ciphers.
(b) Representing

$$
\begin{aligned}
& F_{2} 8=F_{2}[x] /<g(x)>, \\
& \text { where } g(x)=x^{8}+x^{4}+x^{3}+x+1,
\end{aligned}
$$

show that the following bytes
10001100 and 11110111
are inverses of each other in $\mathrm{F}_{2} 8$.
(c) Check whether $\left(x^{3}+1\right)$ is irreducible or not over \mathbf{F}_{5}.
5. (a) Bano has published the public parameters $(119,11)$ for her signature using the RSA digital signature algorithm. Calculate her signature for the message $\mathrm{M}=10$.7
(b) Decrypt the ciphertext

OGHNQXDBGGDBBRR

encrypted with Vigenère cipher using the key WARS.
6. Which of the following statements are True, and which are False? Justify your answers.
(a) $35^{6} \equiv 1(\bmod 37)$.
(b) \mathbf{F}_{11}^{*} is a cyclic group.
(c) Vigenère cipher is a transposition cipher.
(d) The powers of 2 modulo p are strictly increasing for any prime p.
(e) In an RSA system with modulus n, finding the factors of n is equivalent to finding $\phi(\mathbf{n})$.

