M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2018

MMTE-005 : CODING THEORY

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Answer any four questions from questions no. 1 to 5. Question no. 6 is compulsory. Calculators are not allowed.

1. (a) Give an example of a [7, 4] linear code, with justification. Further, give a generator and a parity-check matrix of this code.
(b) Write the generator matrix of the binary [7, 4] cyclic code with generator polynomial $\left(x^{3}+x+1\right)$. Also find the parity check matrix of this code.
2. (a) Prove that the integers modulo n do not form a field if n is not prime.
(b) The systematic generator matrix for a [6, 3] linear block code is

$$
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Find the standard array for syndrome decoding.
(c) Check whether the polynomial $\mathrm{x}^{3}+\mathrm{x}+1 \in \mathrm{~F}_{32}[\mathrm{x}]$ is primitive. You are given that $x^{30} \bmod \left(x^{3}+x+1\right)=x^{2}+1$. You may assume that the polynomial is irreducible.
3. (a) Find a generator polynomial for a $[13,10]-\mathrm{BCH}$ code. Use $\mathrm{x}^{3}+2 \mathrm{x}+1$ as the primitive polynomial for \mathbf{F}_{27}, and the table below :

i	α^{i}	i	α^{i}
1	α	14	2α
2	α^{2}	15	$2 \alpha^{2}$
3	$\alpha+2$	16	$2 \alpha+1$
4	$\alpha^{2}+2 \alpha$	17	$2 \alpha^{2}+\alpha$
5	$2 \alpha^{2}+\alpha+2$	18	$\alpha^{2}+2 \alpha+1$
6	$\alpha^{2}+\alpha+1$	19	$2 \alpha^{2}+2 \alpha+2$
7	$\alpha^{2}+2 \alpha+2$	20	$2 \alpha^{2}+\alpha+1$
8	$2 \alpha^{2}+2$	21	$\alpha^{2}+1$
9	$\alpha+1$	22	$2 \alpha+2$
10	$\alpha^{2}+\alpha$	23	$2 \alpha^{2}+2 \alpha$
11	$\alpha^{2}+\alpha+2$	24	$2 \alpha^{2}+2 \alpha+1$
12	$\alpha^{2}+2$	25	$2 \alpha^{2}+1$
13	2		

(b) Find the weight distribution of a binary code generated by

$$
G=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

Find the weight enumerator polynomial of the code. Also, find the weight enumerator polynomial of the dual code.
4. (a) Let C be any $\left[n, \frac{n-1}{2}\right]$ cycle code over F_{q}.

Prove that C is self-orthogonal if and only if C is an even-like duadic code whose splitting is given by μ_{-1}.
(b) List all codewords of the code C over \mathbf{Z}_{4} generated by $\left[\begin{array}{lllll}1 & 2 & 3 & 0 & 1 \\ 2 & 1 & 0 & 1 & 1\end{array}\right]$. Also find the Lee weight distribution of the code.
5. (a) Let C_{2} be the $(4,2)$ convolutional code, with generator matrix

$$
\mathrm{G}_{2}=\left[\begin{array}{cccc}
1 & 1+\mathrm{D}+\mathrm{D}^{2} & 1+\mathrm{D}^{2} & 1+\mathrm{D} \\
0 & 1+\mathrm{D} & \mathrm{D} & 1
\end{array}\right]
$$

If G_{2} is used to encode the message (11010, 10111) using C_{2}, what is the. codeword ? Find the four component functions used in encoding. What is the memory of the code?
(b) Let C be the $[7,4,2]$ binary code with the following parity-check matrix

$$
\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

(i) Give the Tanner graph for this code.
(ii) List all the codewords of the dual code of C and hence, find its minimum distance. 5
6. Which of the following statements are True and which are False? Give reasons for your answers. Marks will only be given for valid reasons. 10
(a) $2+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}$ is irreducible in $\mathbf{Z}_{3}[\mathrm{x}]$.
(b) Given

$$
H=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

there is a unique codeword of weight 3 corresponding to H , where H is the parity check matrix of a binary code.
(c) A quadratic residue code of length 7 exists over \mathbf{F}_{3}.
(d) The parity check matrix of a turbo code can be the identity matrix.
(e) Every perfect code is a self dual code.

