No. of Printed Pages: 4

MMTE-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

00245

June, 2018

MMTE-005 : CODING THEORY

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note: Answer any four questions from questions no. 1 to 5. Question no. 6 is compulsory. Calculators are not allowed.

- 1. (a) Give an example of a [7, 4] linear code, with justification. Further, give a generator and a parity-check matrix of this code.
 - (b) Write the generator matrix of the binary [7, 4] cyclic code with generator polynomial $(x^3 + x + 1)$. Also find the parity check matrix of this code.
- 2. (a) Prove that the integers modulo n do not form a field if n is not prime.
 - (b) The systematic generator matrix for a [6, 3] linear block code is

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

1

Find the standard array for syndrome decoding.

MMTE-005

I

P.T.O.

5

6

4

(c)

(a)

Check whether the polynomial

 $x^3 + x + 1 \in \mathbf{F}_{32}[x]$ is primitive. You are given that $x^{30} \mod(x^3 + x + 1) = x^2 + 1$. You may assume that the polynomial is irreducible.

3

5

5

3.

Find a generator polynomial for a [13, 10] – BCH code. Use $x^3 + 2x + 1$ as the primitive polynomial for F_{27} , and the table below :

i	α ⁱ	i	α^{i} .
1	α	14	2α
2	α^2	15	$2\alpha^2$
3	$\alpha + 2$	16	$2\alpha + 1$
4	$\alpha^2 + 2\alpha$	17	$2\alpha^2 + \alpha$
5	$2\alpha^2 + \alpha + 2$	18	$\alpha^2 + 2\alpha + 1$
6	$\alpha^2 + \alpha + 1$	19	$2\alpha^2 + 2\alpha + 2$
7	$\alpha^2 + 2\alpha + 2$	20	$2\alpha^2 + \alpha + 1$
8	$2\alpha^2 + 2$	21	$\alpha^2 + 1$
- 9	α + 1	22	$2\alpha + 2$
10	$\alpha^2 + \alpha$	23	$2\alpha^2 + 2\alpha$
11	$\alpha^2 + \alpha + 2$	24	$2\alpha^2 + 2\alpha + 1$
12	$\alpha^2 + 2$	25	$2\alpha^2 + 1$
13	2		

(b) Find the weight distribution of a binary code generated by

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

Find the weight enumerator polynomial of the code. Also, find the weight enumerator polynomial of the dual code.

MMTE-005

- 4. (a) Let C be any $\left[n, \frac{n-1}{2}\right]$ cycle code over \mathbf{F}_q . Prove that C is self-orthogonal if and only if C is an even-like duadic code whose splitting is given by μ_{-1} .
 - (b) List all codewords of the code C over \mathbb{Z}_4 generated by $\begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 2 & 1 & 0 & 1 & 1 \end{bmatrix}$. Also find the Lee weight distribution of the code.

5. (a) Let C_2 be the (4, 2) convolutional code, with generator matrix

 $G_2 = \begin{bmatrix} 1 & 1 + D + D^2 & 1 + D^2 & 1 + D \\ 0 & 1 + D & D & 1 \end{bmatrix}$

If G_2 is used to encode the message (11010, 10111) using C_2 , what is the codeword ? Find the four component functions used in encoding. What is the memory of the code ?

(b)

Let C be the [7, 4, 2] binary code with the following parity-check matrix

1	1	1	0	0	0	0
1	0	Ò	1	1	0	0
1	0	0	0	0	1	1

(i) Give the Tanner graph for this code.

 (ii) List all the codewords of the dual code of C and hence, find its minimum distance. 5

MMTE-005

P.T.O.

5

5

- Which of the following statements are *True* and which are *False*? Give reasons for your answers. Marks will only be given for valid reasons.
 - (a) $2 + x + x^2 + x^3$ is irreducible in $\mathbb{Z}_3[x]$.
 - (b) Given

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix},$$

there is a unique codeword of weight 3 corresponding to H, where H is the parity check matrix of a binary code.

- (c) A quadratic residue code of length 7 exists over \mathbf{F}_3 .
- (d) The parity check matrix of a turbo code can be the identity matrix.
- (e) Every perfect code is a self dual code.

MMTE-005