M．Sc．（MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE）

M．Sc．（MACS）
ロロ2ロ Term－End Examination
June， 2018

MMTE－004 ：COMPUTER GRAPHICS

Time： $1 \frac{1}{2}$ hours
Maximum Marks ： 25
（Weightage ：50\％）
Note：Question no． 1 is compulsory．Attempt any three questions out of questions no． 2 to 5 ．Use of calculator is not allowed．

1．State whether the following statements are True or False．Justify your answers．
（a）Pixel mask means＂A string containing only O＇s．＂
（b）A heavy line on a video monitor could be displayed as adjacent perpendicular lines．
（c）In Bresenham＇s algorithm，while generating a circle，it is easy to generate one octant first and the other by successive reflection．
(d) Uniform scaling and rotation form a commutative pair of operations.
(e) The perspective projection onto the view plane $\mathrm{z}=2$ where the centre of projection is the origin $(0,0,0)$ is the matrix
$\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
2. (a) Write the output obtained after the execution of the following OpenGL statements :
\quad glRotatef $(90,0,0,1) ;$
glScalef (2, 2, 2);
glTranslatef ($1,0,0$);
(b) Distinguish between the following :
(i) Shadow mask method and Beam penetration method.
(ii) Scaling transformation and Shearing transformation.
(iii) Interpolation spline and Approximation spline.
3. (a) Use Bresenham's line algorithm to rasterize the line from $(5,5)$ to $(13,9)$.
(b) Transform the scene in the world coordinate system with the view point at ($3,3,3$). The view plane normal vector is $(-1,-1,-1)$ and the view up vector is $(0,0,1)$.
4. (a) Show that a transformation matrix for a reflection about the line $y=-x$ is equivalent to a reflection relative to the x -axis, followed by a counter clockwise rotation of 90 .
(b) Show that a 2×2 matrix

$$
\mathrm{T}=\left[\begin{array}{cc}
\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}} & \frac{2 \mathrm{t}}{1+\mathrm{t}^{2}} \\
\frac{-2 \mathrm{t}}{1+\mathrm{t}^{2}} & \frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}
\end{array}\right]
$$

represents a rotation.
5. Use the Liang-Barsky line clipping algorithm to clip the line $\mathbf{P}_{1}(-15,-30)-P_{2}(30,60)$ against the window having diagonally opposite corners as $(0,0)$ and $(15,15)$.

