No. of Printed Pages: 4

**MMTE-003** 

## M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

## 00045 Term-End Examination

June, 2018

## MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time: 2 hours

Maximum Marks: 50

**Note:** Attempt any **five** questions. All questions carry equal marks. Use of calculator is **not** allowed.

1. (a) Apply DFT to the following image (I).

Recover the original image (I) from the transformed image and verify the loss of information.

$$\mathbf{I} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

5

(b) Perform Histogram Equalisation of the image (I) given below:

5

5

5

4

6

$$I = \begin{bmatrix} 4 & 4 & 4 & 4 & 4 \\ 3 & 4 & 5 & 4 & 3 \\ 3 & 5 & 5 & 5 & 3 \\ 3 & 4 & 5 & 4 & 3 \\ 4 & 4 & 4 & 4 & 4 \end{bmatrix}$$

2. (a) Perform Grey Level Slicing on the following image (I) without background and region limit 3 to 6.

$$I = \begin{bmatrix} 3 & 4 & 5 \\ 6 & 6 & 7 \\ 1 & 2 & 2 \end{bmatrix}$$

- (b) Use the LZW coding algorithm to encode the seven-bit ASCII string aaaaaaaaaab.
- 3. (a) Determine the value of the central pixel (marked by round) for the given image f, if it is smoothened by a  $3 \times 3$  box filter.

$$f = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 4 & 3 \end{bmatrix}$$

- (b) Write short notes on following:
  - (i) Principal Component Analysis
  - (ii) Digital Image Watermarking

**MMTE-003** 

- 4. (a) Give the mathematical expression for a Wiener filter. Also, give advantages and drawbacks of a Wiener filter over Inverse filter.
- 4
- (b) Prove that the Wiener filter reduces to an Inverse filter when noise is negligible.
- 3
- (c) Determine the storage and transmission time requirement for a video of 30 frames, where size of each frame is 640 × 480 and 3 bytes/pixel. It is assumed that the video is taken at 30 frames/second and Data Transmission Rate (DTR) is 64 kbps.
- 3.
- 5. (a) Compare Canny edge detector and Laplacian of Gaussian edge detector. What is the difference between boundary detection and edge detection?
- 4
- (b) Determine Linear Convolution and Linear Correlation between two matrices x(m, n) and h(m, n), given as

$$x(m, n) = \begin{bmatrix} 11 & 12 & 13 \\ 14 & 15 & 16 \\ 17 & 18 & 19 \end{bmatrix}$$
 and

$$h(m, n) = [3 4 5]$$

6

- **6.** (a) Give steps to decode the exponential Golomb Code  $G_{exp}^{k}(n)$ .
- 6
- (b) Show that subtracting the Laplacian of an image from the image is proportional to the unsharp masking.

4

7. (a) The following pattern classes have Gaussian probability density functions:

$$C_1$$
: {(0, 0), (2, 0), (2, 2), (0, 2)} and  $C_2$ : {(4, 4), (6, 4), (6, 6), (4, 6)}.

Obtain the equation of Bayes' decision boundary between these two classes when

$$P(C_1) = P(C_2) = \frac{1}{2}$$
.

$$\mathbf{f_1} = \begin{bmatrix} 1 & 3 & 7 \\ 5 & 15 & 75 \\ 100 & 50 & 100 \end{bmatrix}$$
 and 
$$\mathbf{f_2} = \begin{bmatrix} 50 & 100 & 150 \\ 35 & 45 & 90 \\ 120 & 70 & 150 \end{bmatrix}$$

Assume that both the images are of 8-bit integer type.

4