M．Sc．（MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE） M．Sc．（MACS）

ロロロロ45 Term－End Examination

June， 2018

MMTE－003 ：PATTERN RECOGNITION AND IMAGE PROCESSING

Time ： 2 hours
Maximum Marks ： 50
Note：Attempt any five questions．All questions carry equal marks．Use of calculator is not allowed．

1．（a）Apply DFT to the following image（I）． Recover the original image（I）from the transformed image and verify the loss of information．

$$
I=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

(b) Perform Histogram Equalisation of the image (I) given below :

$$
\mathrm{I}=\left[\begin{array}{lllll}
4 & 4 & 4 & 4 & 4 \\
3 & 4 & 5 & 4 & 3 \\
3 & 5 & 5 & 5 & 3 \\
3 & 4 & 5 & 4 & 3 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

2. (a) Perform Grey Level Slicing on the following image (I) without background and region limit 3 to 6.

$$
I=\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 6 & 7 \\
1 & 2 & 2
\end{array}\right]
$$

(b) Use the LZW coding algorithm to encode the seven-bit ASCII string aaaaaaaaab.
3. (a) Determine the value of the central pixel (marked by round) for the given image f, if it is smoothened by a 3×3 box filter.

$$
\mathrm{f}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 4 & 3
\end{array}\right]
$$

(b) Write short notes on following :
(i) Principal Component Analysis
(ii) Digital Image Watermarking
4. (a) Give the mathematical expression for a Wiener filter. Also, give advantages and drawbacks of a Wiener filter over Inverse filter.
(b) Prove that the Wiener filter reduces to an Inverse filter when noise is negligible. ' 3
(c) Determine the storage and transmission time requirement for a video of 30 frames, where size of each frame is 640×480 and 3 bytes/pixel. It is assumed that the video is taken at 30 frames/second and Data Transmission Rate (DTR) is 64 kbps .
5. (a) Compare Canny edge detector and Laplacian of Gaussian edge detector. What is the difference between boundary detection and edge detection?
(b) Determine Linear Convolution and Linear Correlation between two matrices $\mathbf{x}(\mathrm{m}, \mathrm{n})$ and $h(m, n)$, given as
$x(m, n)=\left[\begin{array}{lll}11 & 12 & 13 \\ 14 & 15 & 16 \\ 17 & 18 & 19\end{array}\right]$ and
$\mathrm{h}(\mathrm{m}, \mathrm{n})=[345] \quad 6$
6. (a) Give steps to decode the exponential Golomb Code $\mathrm{G}_{\mathrm{exp}}^{\mathrm{k}}(\mathrm{n})$.
(b) Show that subtracting the Laplacian of an image from the image is proportional to the unsharp masking.
7. (a) The following pattern classes have Gaussian probability density functions :

$$
\begin{aligned}
& C_{1}:\{(0,0),(2,0),(2,2),(0,2)\} \text { and } \\
& C_{2}:\{(4,4),(6,4),(6,6),(4,6)\} .
\end{aligned}
$$

Obtain the equation of Bayes' decision boundary between these two classes when

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{C}_{1}\right)=\mathrm{P}\left(\mathrm{C}_{2}\right)=\frac{1}{2} \tag{6}
\end{equation*}
$$

(b) Perform subtraction and division operations $\left(f_{2}-f_{1}\right.$ and $\left.\frac{f_{2}}{f_{1}}\right)$ on the following two images f_{1} and f_{2} :

$$
\begin{aligned}
& f_{1}=\left[\begin{array}{ccc}
1 & 3 & 7 \\
5 & 15 & 75 \\
100 & 50 & 100
\end{array}\right] \text { and } \\
& f_{2}=\left[\begin{array}{ccc}
50 & 100 & 150 \\
35 & 45 & 90 \\
120 & 70 & 150
\end{array}\right]
\end{aligned}
$$

Assume that both the images are of 8-bit integer type.

