$$
\text { No. of Printed Pages : } 4
$$

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

$\square \square \square 5$ Term-End Examination
June, 2018

MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours
Maximum Marks : 50
Note: Question no. 6 is compulsory. Answer any four questions from questions no. 1 to 5. Calculators are not allowed.

1. (a) Sort the following numbers using the Quick Sort algorithm :

$$
43,27,33,11,75,22
$$

(b) Show the results of inserting the keys
B, R, A, U, H, S, F, T, K, P, M, L, N, W, Q
in order into an empty B-tree with minimum degree 3.
2. (a) Find the gcd of 21 and 35 using the recursive extended Euclidean algorithm.
(b) Construct the Huffman tree for the following data :

Character	A	B	C	D	E
Probability	0.35	0.1	0.2	0.2	0.15

Obtain the codes for the characters.
3. (a) Determine a longest common subsequence of the following sequences using dynamic programming :

$$
\begin{aligned}
& X:(0,1,1,0,1,0) \\
& Y:(1,1,0,0,0,1)
\end{aligned}
$$

(b) Construct the max-heap for the following array :

20	8	14	18	11	13	7	6	12	5

Show all the steps, while doing so. Further, sort the array using heap-sort.
4. (a) Draw the minimum spanning tree using Prim's algorithm for the following graph, starting with vertex c:

(b) Solve the recurrence relation

$$
T(n)=T\left(\frac{n}{4}\right)+T\left(\frac{3 n}{4}\right)+O(n)
$$

using the recursion tree method.
5. (a) Multiply the polynomials $A(x)=x^{2}+x+1$ and $B(x)=x^{2}-3 x+1$, using their point value representation.
(b) For the following network flow, draw the residual network :

Find an augmenting path p and use it to augment the flow. Draw the flow network of the augmented flow.
6. Which of the following statements are True and which are False? Give reasons for your answers.10
(a) Any array in ascending order is a min-heap.
(b) The fractional knapsack problem can be solved optimally using a dynamic programming based strategy.
(c) The number of keys in a B-tree of minimum degree t and depth d is at most $\left((2 \mathrm{t}-1)^{\mathrm{d}+1}-1\right) / 2^{\mathrm{d}}$.
(d) The congruence $a x \equiv b(\bmod n)$ has at least one solution for any natural number a, b and n.
(e) For any weighted graph, there is a unique minimal spanning tree.

