M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

amors M.Sc. (MACS)

Term-End Examination

June, 2018

MMTE-001 : GRAPH THEORY

Time : 2 hours ${ }^{*}$
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four from questions $\mathbf{2}$ to 6. Electronic computing devices are not allowed. Draw diagrams wherever necessary.

1. State whether true or false, with suitable justification in the form of a short proof or a counter example.
$5 \times 2=10$
(a) A graph with n vertices and $\mathrm{n}-1$ edges is a tree.
(b) There are graphs G with diam $\mathrm{G}=\operatorname{rad} \mathrm{G}$.
(c) A simple connected graph G with $e(G) \leq 3 n(G)-6$ is always planar, where $e(G)$ denotes the number of edges in G.
(d) If G is a k -regular bipartite graph, $\mathrm{k} \geq 1$, with bipartition X, Y, then $|X|=|Y|$.
(e) Every graph with at least five vertices is four-colourable.
2. (a) Let G be a simple graph having no isolated vertex and no induced subgraph with exactly two edges. Show that G is a complete graph.
(b) Find a minimum spanning tree of the following graph using Kruskal's algorithm :

3. (a) If every vertex of a graph has a degree of least two, then show that G contains a cycle.
(b) Draw the Petersen graph. Check whether it is Eulerian or not. Show that it is not planar.
4. (a) Prove that an integer list d of size $n>1$ is graphic if and only if the list d^{\prime} is graphic, where d^{\prime} is obtained from d by deleting its largest element Δ and subtracting 1 from the next Δ largest elements.
(b) If f is a feasible flow and $[\mathrm{S}, \mathrm{T}]$ is a source/sink cut, then $\operatorname{val}(\mathrm{f})<\operatorname{cap}(\mathrm{S}, \mathrm{T})$.
5. (a) If G is a self-complementary graph with n vertices, show that $n=4 k$ or $4 k+1$ for sum $k \geq 1$. Draw a self-complementary graph with five vertices.
(b) Prove that every component of the symmetric difference of two matchings in a graph is a path or an even cycle.
(c) Draw a graph G such that $\kappa(G)<\kappa^{\prime}(G)<\delta(G)$ where κ, κ^{\prime} and δ denote vertex-connectivity, edge-connectivity and minimum degree.
6. (a) Prove that $\chi(G \square H)=\max \{\chi(\mathrm{G}), \chi(\mathrm{H})\}$ where χ denotes the chromatic number and \square represents the operation of taking Cartesian product of graphs.
(b) Draw a plane embedding of K_{4} and its dual.
(c) Determine, with justification, whether the graph below is Hamiltonian.

