No. of Printed Pages: 8

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

00225

June, 2018

MMT-008 : PROBABILITY AND STATISTICS

Time : 3 hours

Maximum Marks : 100

(Weightage : 50%)

MMT-008

- Note: Question no. 8 is compulsory. Answer any six questions from questions no. 1 to 7. Use of calculator is allowed. All the symbols used have their usual meaning.
 - (a) The random variables, X and Y have the following joint p.d.f. :

 $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{x} + \mathbf{y}, & 0 \le \mathbf{x} \le \mathbf{1}, \ 0 \le \mathbf{y} \le \mathbf{1} \\ 0, & \text{elsewhere} \end{cases}$

Find the

- (i) Conditional p.d.f. of X given Y = 0.2.
- (ii) Marginal p.d.f. of X.
- (iii) $P[X \le 0.4 | Y = 0.2]$.

MMT-008

1.

1

P.T.O.

- A single repairperson looks after two machines, 1 and 2. Each time it is repaired, machine *i* stays up for an exponential time with rate λ_i , where i = 1, 2. When machine fails, it requires an exponentially i distributed amount of work with rate μ_i to complete its repair. The repairperson will always serve machine 1 when it is down. For instance, if machine 1 fails while machine 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on machine 1.
- Write down all the states. (i)
- Find all steady state probabilities. (ii)
- What is the probability that the (iii) machine 2 is down?

2.

(b)

(a) Let $Y \sim N_3(\mu, \Sigma)$ where $\mu = \begin{vmatrix} 4 \\ -1 \\ -1 \end{vmatrix}$ and

9

6

$$\Sigma = \begin{bmatrix} 6 & 1 & 2 \\ 1 & 8 & 4 \\ 2 & 4 & 9 \end{bmatrix}.$$

Obtain distribution of X = CY where (i) $\mathbf{C} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}.$

Obtain Z = l'Y such that $Z \sim N(0, 1)$. (ii)

MMT-008

(b)

Let N_t be a Poisson process with parameter $\lambda > 0$ and $S_{N(t)}$ be the time of last occurrence before time t and $S_{N(t)+1}$ be the time of next occurrence. Show that the residual time $Y = S_{N(t)+1} - t$ follows exponential distribution with parameter λ .

(c)

Consider a taxi stand where taxis and customers arrive in accordance with Poisson processes with respective rates of one and two per minute. A taxi will wait no matter how many other taxis are present. However, if an arriving customer does not find a taxi waiting, he leaves.

Find

- (i) the average number of taxis waiting, and
- (ii) the proportion of arriving customers that get taxis.
- **3.** (a) Let $\overline{X} = (X_1, X_2, X_3)$ be a random vector and data matrix X be given as

	3	4	2	$\begin{bmatrix} X_1 \end{bmatrix}$	
X′ =	5	2	5	X ₂	•
	4	2	3	X ₃	

Obtain

- (i) Variance-covariance matrix
- (ii) Correlation matrix

MMT-008

3

P.T.O.

10

6

(b) In a branching process having offspring distribution,

$$p_{j} = \begin{cases} \frac{1}{4} & j = 0\\ \frac{1}{4} & j = 1\\ \frac{1}{2} & j = 2 \end{cases}$$

find the probability of extinction.

5

4

5

- 4. (a) In a village 20% children were suffering from malaria. A blood test ordinarily reports positive in 80% cases if the patient was infected by malaria and in 60% cases reports negative if the patient was not infected by malaria. A child was selected at random from the village and the blood test report was positive. Then what is the probability that he is infected by malaria?
 - (b) Find the matrix of the following quadratic form and determine its definiteness :

$$2x_1^2 + 3x_2^2 + 4x_3^2 + 6x_1x_2$$

(c) A barber shop has two barbers. Customers arrive at a rate of 5 per hour in a Poisson process and service time of each barber takes on average 15 minutes according to

MMT-008

exponential distribution. The shop has 4 chairs for waiting customers. When a customer arrives in the shop and does not find an empty chair, he will leave the shop.

- (i) What is the expected number of customers in the shop?
- (ii) What is the probability that a customer will leave the shop finding no empty chair to wait ?
- 5. (a) Evaluate T^2 for testing $H_0: \mu' = [5, 6]$ using the following data :

 $\mathbf{X} = \begin{bmatrix} 4 & 5 & 4 & 11 \\ 8 & 7 & 9 & 4 \end{bmatrix}$

- (b) Let π_1 and π_2 be two populations having density functions $P_1(x)$ and $P_2(x)$. Suppose the cost of assigning items to π_1 given π_2 in the true population is 15 and the cost of assigning items to π_2 given π_1 in the true population is 20. It is known that 60% of items belong to π_2 .
 - (i) Find the prior probabilities.
 - (ii) Write the cost of misclassification.
 - (iii) Determine classification regions.
 - (iv) If a new item has $P_1(x) = 0.6$ and $P_2(x) = 0.4$, then in which population will it be assigned?

MMT-008

P.T.O.

6

6

6.

(a) Let $X \sim N_3(\mu, \Sigma)$ with

$$\Sigma = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Examine the independence of

(i) X_1 and X_2

- (ii) (X_1, X_2) and X_3
- (iii) $X_1 + X_2$ and X_3
- (b) The probability transition matrix of a simple weather model having three states, Sunny (S), Cloudy (C) and Rainy (R) with initial probabilities (0.6, 0.3, 0.1) is given below :

3

6

$$P = C \begin{bmatrix} S & C & R \\ 0.5 & 0.3 & 0.2 \\ 0.4 & 0.3 & 0.3 \\ R \begin{bmatrix} 0.2 & 0.5 & 0.3 \end{bmatrix}$$

- (i) Draw the directed graph for the transition matrix.
- (ii) Find the probability that three successive days will be sunny starting from the initial day.

MMT-008

(c) Let there be three random variables X_1 , X_2 and X_3 with the following covariance matrix :

$$\Sigma = \begin{bmatrix} 1 & 0.6 & 0.4 \\ 0.6 & 1 & 0.3 \\ 0.4 & 0.3 & 1 \end{bmatrix}$$

Take one underlying factor and write its factor model.

 (a) Determine the nature of states from the following transition matrix of a Markov chain :

	1	2	3
1	0.5	0.5	0
2	0.75	0	0.25
3	lo	1 ·	0

(b) For a Poisson process $\{X(t) : t \ge 0\}$, define processes $N(t) = X(t + s_0) - X(t)$ and $U(t) = X(t + s_0) - X(s_0)$. Examine which of the processes N(t) and U(t) is a Poisson process.

7

MMT-008

7.

P.T.O.

7

6

- 8. State whether the following statements are True or False. Justify your answers. $5 \times 2=10$
 - (a) Transition probabilities p^(m, n)_{ij} in a time homogeneous Markov chain depend on specific times m, n.
 - (b) In a branching process, if the offspring probability $p_0 = 0$, then there will never occur an extinction of the process.
 - (c) If P(B) > 0, then P(A|B) is smaller than $P(A \cap B)$.
 - (d) If A is a positive definite matrix, then |A| > 0.
 - (e) The principal components of a set of variables do not depend upon the scales of the variables.

MMT-008

1,200