M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 $\square \square 2 \mathcal{S}$ June, 2018

MMT-008 : PROBABILITY AND STATISTICS

Time : 3 hours
Maximum Marks : 100
(Weightage : 50\%)
Note: Question no. 8 is compulsory. Answer any six questions from questions no. 1 to 7. Use of calculator is allowed. All the symbols used have their usual meaning.

1. (a) The random variables, X and Y have the following joint p.d.f. :

$$
f(x, y)=\left\{\begin{array}{cc}
x+y, & 0 \leq x \leq 1,0 \leq y \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Find the
(i) Conditional p.d.f. of X given $\mathrm{Y}=0 \cdot 2$.
(ii) Marginal p.d.f. of X .
(iii) $\mathrm{P}[\mathrm{X} \leq 0.4 \mid \mathrm{Y}=0.2]$.
(b) A single repairperson looks after two machines, 1 and 2. Each time it is repaired, machine i stays up for an exponential time with rate λ_{i}, where $i=1,2$. When machine i fails, it requires an exponentially distributed amount of work with rate μ_{i} to complete its repair. The repairperson will always serve madine 1 when it is down. For instance, if machine 1 fails while machine 2 is being repaired, then the repairperson will immediately stop work on machine 2 and start on machine 1.
(i) Write down all the states.
(ii) Find all steady state probabilities.
(iii) What is the probability that the machine 2 is down?
2. (a) Let $\mathrm{Y} \sim \mathrm{N}_{3}(\mu, \Sigma)$ where $\mu=\left[\begin{array}{c}4 \\ -1 \\ 5\end{array}\right]$ and

$$
\Sigma=\left[\begin{array}{lll}
6 & 1 & 2 \\
1 & 8 & 4 \\
2 & 4 & 9
\end{array}\right]
$$

(i) Obtain distribution of $\mathrm{X}=\mathrm{CY}$ where

$$
C=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

(ii) Obtain $\mathrm{Z}=l^{\prime} \mathrm{Y}$ such that $\mathrm{Z} \sim \mathrm{N}(0,1)$.
(b) Let N_{t} be a Poisson process with parameter $\lambda>0$ and $S_{N(t)}$ be the time of last occurrence before time t and $S_{N(t)+1}$ be the time of next occurrence. Show that the residual time $\mathrm{Y}=\mathrm{S}_{\mathrm{N}(\mathrm{t})+1}-\mathrm{t}$ follows exponential distribution with parameter λ.
(c) Consider a taxi stand where taxis and customers arrive in accordance with Poisson processes with respective rates of one and two per minute. A taxi will wait no matter how many other taxis are present. However, if an arriving customer does not find a taxi waiting, he leaves.

Find
(i) the average number of taxis waiting, and
(ii) the proportion of arriving customers that get taxis.
3. (a) Let $\bar{X}=\left(X_{1}, X_{2}, X_{3}\right)$ be a random vector and data matrix X be given as

$$
X^{\prime}=\left[\begin{array}{lll}
3 & 4 & 2 \\
5 & 2 & 5 \\
4 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

Obtain
(i) Variance-covariance matrix
(ii) Correlation matrix 10
(b) In a branching process having offspring distribution,

$$
p_{j}= \begin{cases}\frac{1}{4} & j=0 \\ \frac{1}{4} & j=1 \\ \frac{1}{2} & j=2\end{cases}
$$

find the probability of extinction.
4. (a) In a village 20% children were suffering from malaria. A blood test ordinarily reports positive in 80% cases if the patient was infected by malaria and in 60% cases reports negative if the patient was not infected by malaria. A child was selected at random from the village and the blood test report was positive. Then what is the probability that he is infected by malaria?
(b) Find the matrix of the following quadratic form and determine its definiteness :

$$
2 x_{1}^{2}+3 x_{2}^{2}+4 x_{3}^{2}+6 x_{1} x_{2}
$$

(c) A barber shop has two barbers. Customers arrive at a rate of 5 per hour in a Poisson process and service time of each barber takes on average 15 minutes according to
exponential distribution. The shop has 4 chairs for waiting customers. When a customer arrives in the shop and does not find an empty chair, he will leave the shop.
(i) What is the expected number of customers in the shop?
(ii) What is the probability that a customer will leave the shop finding no empty chair to wait?
5. (a) Evaluate T^{2} for testing $\mathrm{H}_{0}: \mu^{\prime}=[5,6]$ using the following data :

$$
X=\left[\begin{array}{cccc}
4 & 5 & 4 & 11 \\
8 & 7 & 9 & 4
\end{array}\right]
$$

(b) Let π_{1} and π_{2} be two populations having density functions $\mathrm{P}_{1}(\mathrm{x})$ and $\mathrm{P}_{2}(\mathrm{x})$. Suppose the cost of assigning items to π_{1} given π_{2} in the true population is 15 and the cost of assigning items to π_{2} given π_{1} in the true population is 20 . It is known that 60% of items belong to π_{2}.
(i) Find the prior probabilities.
(ii) Write the cost of misclassification.
(iii) Determine classification regions.
(iv) If a new item has $P_{1}(x)=0.6$ and $P_{2}(x)=0.4$, then in which population will it be assigned?
6. (a) Let $\mathrm{X} \sim \mathrm{N}_{3}(\mu, \Sigma)$ with

$$
\Sigma=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Examine the independence of
(i) X_{1} and X_{2}
(ii) $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ and X_{3}
(iii) $\mathrm{X}_{1}+\mathrm{X}_{2}$ and X_{3}
(b) The probability transition matrix of a simple weather model having three states, Sunny (S), Cloudy (C) and Rainy (R) with initial probabilities $(0.6,0.3,0.1)$ is given below :

$$
\left.P=\begin{array}{ccc}
S & C & R \\
\mathrm{~S} \\
\mathrm{C}
\end{array} \begin{array}{ccc}
0.5 & 0 \cdot 3 & 0 \cdot 2 \\
0 \cdot 4 & 0.3 & 0 \cdot 3 \\
0 \cdot 2 & 0.5 & 0 \cdot 3
\end{array}\right]
$$

(i) Draw the directed graph for the transition matrix.
(ii) Find the probability that three successive days will be sunny starting from the initial day.
(c) Let there be three random variables $\mathrm{X}_{1}, \mathrm{X}_{2}$ and X_{3} with the following covariance matrix :

$$
\Sigma=\left[\begin{array}{ccc}
1 & 0.6 & 0.4 \\
0.6 & 1 & 0.3 \\
0.4 & 0.3 & 1
\end{array}\right]
$$

Take one underlying factor and write its factor model.
7. (a) Determine the nature of states from the following transition matrix of a Markov chain :
$\left.\begin{array}{c}1 \\ 2 \\ 3\end{array} \begin{array}{ccc}1 & 2 & 3 \\ 0.5 & 0.5 & 0 \\ 0.75 & 0 & 0.25 \\ 0 & 1 & 0\end{array}\right]$
(b) For a Poisson process $\{X(t): t \geq 0\}$, define processes $N(t)=X\left(t+s_{0}\right)-X(t)$ and $U(t)=X\left(t+s_{0}\right)-X\left(s_{0}\right)$. Examine which of the processes $\mathrm{N}(\mathrm{t})$ and $\mathrm{U}(\mathrm{t})$ is a Poisson process.
8. State whether the following statements are True or False. Justify your answers.
(a) Transition probabilities $\mathrm{p}_{\mathrm{ij}}^{(\mathrm{m}, \mathrm{n})}$ in a time homogeneous Markov chain depend on specific times m, n.
(b) In a branching process, if the offspring probability $p_{0}=0$, then there will never occur an extinction of the process.
(c) If $P(B)>0$, then $P(A \mid B)$ is smaller than $P(A \cap B)$.
(d). If A is a positive definite matrix, then $|\mathrm{A}|>0$.
(e) The principal components of a set of variables do not depend upon the scales of the variables.

