M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

DTDES
Term-End Examination
June, 2018

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 7. Use of non-programmable scientific calculator is allowed.

1. State whether the following statements are True or False. Justify your answers with the help of a short proof or a counter example.
$5 \times 2=10$
(a) For the Legendre polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ of degree n ,

$$
\int_{-1}^{+1}\left[P_{n}(x)\right]^{2} d x=\frac{1}{n+1}
$$

(b) If \mathcal{L} denotes Laplace Transform, then

$$
\mathcal{L}\left[t^{n}\right]=\frac{\sqrt{\mathrm{n}+1}}{\mathrm{~s}^{\mathrm{n}+1}}, \mathrm{n}>-1, \mathrm{~s}>0 .
$$

(c) The heat conduction equation $u_{t}=u_{x x}$ is approximated by
$\left(u_{m}^{n+1}-u_{m}^{n-1}\right)=\frac{k}{h^{2}}\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right) ;$
then the truncation error is of the order $\mathrm{k}^{3}+\mathrm{kh}^{2}$.
(d) The PDE $\frac{\partial^{2} u}{\partial x^{2}}+2 x \frac{\partial^{2} u}{\partial x \partial y}+\left(1+y^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}=0$ is parabolic in the region $x^{2}-y^{2}>1$.
(e) The fourth order Runge-Kutta method is used to solve the initial value problems

$$
\mathrm{y}^{\prime}=-200 \mathrm{y}, \mathrm{y}(0)=1 .
$$

The value of h, so that the method produces stable result is $\mathrm{h}<0.015$.
2. (a) Construct Green's function for the differential equation

$$
\mathrm{xy}^{\prime \prime}+\mathrm{y}^{\prime}=0,0<\mathrm{x}<l
$$

under the condition that $y(0)$ is bounded and $\mathrm{y}(1)=0$.
(b) If $P_{n}(x)$ is a Legendre polynomial of degree n , then using orthogonality property, show that

$$
\int_{-1}^{+1} x^{2} P_{n+1}(x) P_{n-1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}
$$

3. (a) Find the solution of the initial boundary value problem

$$
\begin{aligned}
& u_{t}=u_{x x}, 0 \leq x \leq 1, \\
& u(x, 0)=\sin (2 \pi x), 0 \leq x \leq 1 \\
& u(0, t)=0=u(1, t)
\end{aligned}
$$

Using the Crank-Nicolson method with
$\lambda=0.6$ and assuming $h=\frac{1}{3}$, integrate for one time level.
(b) Solve the initial value problem

$$
y^{\prime}=x+y^{2}, y(0)=1
$$

on the interval ($0,0.4$) using the Runge-Kutta second order method with $h=0 \cdot 2$.
(c) Find the Fourier sine transform of the following function:

$$
f(x)=\left\{\begin{array}{cc}
\pi x & , \\
\pi(2-x), & 1 \leq x \leq 2
\end{array}\right.
$$

4. (a) Show that

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{1}{(s-a)^{n+1}}\right\}=\frac{t^{n}}{\underline{n}} e^{a t} \tag{3}
\end{equation*}
$$

(b) Using the Frobenius method, find the power series solution of the equation

$$
\left(x^{2}-x\right) \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0
$$

about $\mathrm{x}=0$.
(c) For single-step methods, what is the numerical error at a nodal point? When is the numerical single-step method said to be stable?
5. (a) Using Laplace transforms, solve

$$
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+9 \mathrm{y}=\mathrm{t}
$$

given that $\mathrm{y}(0)=0, \mathrm{y}(\pi / 2)=0$.
(b) Using the five-point formula, find the solution of the boundary value problem

$$
\nabla^{2} u=x^{2}+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 1
$$

subject to the boundary conditions

$$
u=\frac{1}{12}\left(x^{4}+y^{4}\right)
$$

on the lines

$$
\begin{aligned}
& x=1 ; y=0 ; y=1 \text { and } \\
& 12 u+\frac{\partial u}{\partial x}=x^{4}+y^{4}+\frac{x^{3}}{3} \text { on } x=0
\end{aligned}
$$

Use central difference approximation on the boundary condition.
6. (a) Find $y(0 \cdot 1), y(0 \cdot 2)$ and $y(0 \cdot 3)$ from

$$
\frac{d y}{d x}=x^{2}-y, y(0)=1
$$

by using the $4^{\text {th }}$ order Taylor series method.
Hence obtain $y(0.4)$ using the Adams-Bashforth method with predictor P and corrector C as given below :

$$
\begin{gathered}
P: y_{n+1}^{p}=y_{n}+\frac{h}{24}\left(55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+\right. \\
\left.37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right) \\
C: y_{n+1}^{c}=y_{n}+\frac{h}{24}\left(9 y_{n+1}^{\prime}-19 y_{n}^{\prime}-\right. \\
\left.5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right)
\end{gathered}
$$

Use one corrector iteration.
(b) Show that

$$
\begin{equation*}
2 n J_{n}(x)=x\left[J_{n-1}(x)+J_{n+1}(x)\right] \tag{3}
\end{equation*}
$$

(c) If F^{-1} represents inverse Fourier Transform, evaluate $F^{-1}\left(\frac{1}{\alpha^{2}+2 \alpha+5}\right)$.
7. (a) Obtain the system of equations for solving the boundary value problem

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

with $y(0)-y^{\prime}(0)=-1, y(1)+y^{\prime}(1)=1$.
Use second order finite differences for y^{\prime} and $y^{\prime \prime}$, with $\mathrm{h}=\frac{1}{2}$.
(b) The wave equation $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \mathbf{x}^{2}}$ is approximated by

$$
\begin{aligned}
\delta_{t}^{2} u_{i}^{n}= & r^{2} \delta_{\mathrm{x}}^{2}\left[\theta u_{i}^{n+1}+\right. \\
& \left.(1-2 \theta) u_{i}^{n}+\theta u_{i}^{n-1}\right]
\end{aligned}
$$

where $r=\frac{k}{h}$. Using the Von Neumann method, investigate the stability.
(c) What type of finite elements are used for
(i) one-dimensional problems?
(ii) two-dimensional problems?

2

