No. of Printed Pages : 4

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

00865

Term-End Examination

June, 2018

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 (Weightage : 70%)

MMT-004

- Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 6. Calculators are not allowed.
- 1. State whether the following statements are *True* or *False*. Give reasons for your answers. $5\times 2=10$
 - (a) The set $\left\{ \frac{m}{n} \mid m, n \in \mathbf{N} \right\}$ is a compact

subset of R under the usual metric.

- (b) The function $f : \mathbf{R} \to \mathbf{R}$ given by f(x) = |x|is locally invertible at x = 0.25.
- (c) The collection of all compact subsets in \mathbf{R} under the usual metric is a σ -algebra of \mathbf{R} .

MMT-004

1

P.T.O.

- (d) Every Lebesgue integrable function is Riemann integrable.
- (e) If X and Y are metric spaces, $f : X \to Y$ is continuous and $\{x_n\}$ is a Cauchy sequence in X, then $\{f(x_n)\}$ is also a Cauchy sequence.
- 2. (a) Suppose A and B are disjoint closed sets in a metric space (X, d). Prove that there exist disjoint open sets U and V such that $U \supset A$ and $V \supset B$.
 - (b) Suppose E is an open set in \mathbb{R}^n and $f: E \to \mathbb{R}^m$ is a function. Explain how the k^{th} derivative of f is defined, for k = 2, 3, Suppose $g: \mathbb{R}^n \to \mathbb{R}^m$ is linear, prove that $g^{(k)} = 0$ for k = 2, 3,

3

4

3

4

- (c) Define the Lebesgue outer measure. Prove that the Lebesgue outer measure of the empty set is zero. What is the outer measure of the set of irrationals in R ? Justify your answer.
- 3. (a) Give, with justification, an example of a proper subspace of \mathbf{R}^3 which is complete under the usual metric on \mathbf{R}^3 . On \mathbf{R}^3 , give a metric other than the Euclidean metric and check whether \mathbf{R}^3 is complete under that metric.

MMT-004

2

- (b) State the Inverse Function Theorem for vector-valued functions. Verify the theorem for the function $f : \mathbb{R}^4 \to \mathbb{R}^4$ defined by $f(x, y, z, w) = (x + y, x^2 + y^2, wz, yw)$ at (1, 1, 1, 1).
- (c) Consider the sequence $f_n = \chi_{[n, \infty]}$ for $n = 1, 2, 3, \dots$ Does the Monotone Convergence Theorem hold for this sequence? Give reasons for your answer.
- (a) Let X be a set, and d be the discrete metric on X. What are the
 - (i) bounded subsets of X?
 - (ii) closed subsets of X?

Give reasons for your answer.

Are the closed and bounded subsets of X, compact, if X is infinite ? Give reasons for your answer.

- (b) Consider the function f: R³ → R given by f(x, y, z) = x + y + z sin (xyz). Show that f(x, y, z) = 0 defines a unique continuously differentiable function g on a neighborhood N of the point (0, 0) such that f(g(u), u) = 0 ∀ u ∈ N.
- (c) Prove that every continuous function is Lebesgue measurable and that the converse is not true.

3

MMT-004

P.T.O.

4

2

4

3

3

4.

- 5. (a) Suppose f and g are two continuous real valued functions defined on a connected metric space X. Suppose a, b (a ≤ b), belong to the range of g and f(x) ∈ [a, b] ∀ x ∈ X. Prove that f(c) = g(c) for some c ∈ X.
 - (b) Obtain the second Taylor's series expansion for the function $f(x, y) = x e^{y}$ at (1, -1).
 - (c) Give an example, with justification, for each of the following :
 - (i) A stable system;
 - (ii) A time-varying system.
- 6. (a) Let (X, d) be a compact metric space and (Y, d) be any metric space. Suppose f : X → Y is continuous. Prove that f is uniformly continuous.
 - (b) Prove that the critical points of the function $f: \mathbb{R}^2 \to \mathbb{R}$, defined by $f(x, y) = x^3 3xy + y^3$, are (1, 1) and (0, 0). Also prove that (0, 0) is a saddle point and (1, 1) is a local minimum.
 - (c) Find the Fourier series of the function f defined by f(x) = |x| on $[-\pi, \pi]$.

MMT-004

4

1,200

4

3

3

3

4

3