M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

पロ535

M.Sc. (MACS)

Term-End Examination
June, 2018

MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Let the matrix of a linear operator T on \mathbf{R}^{3} with respect to the standard basis be

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right] .
$$

Find the matrix of T with respect to the basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

(b) Write the spectral decomposition of the matrix

$$
\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

2. (a) Prove that the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 3 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

is diagonalizable. Find an invertible matrix P so that

$$
P^{-1} \mathrm{AP}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right] . \quad 2 \frac{1}{2}
$$

(b) Write a unitary matrix whose first column is,

$$
\frac{1}{\sqrt{3}}\left[\begin{array}{l}
i \\
i \\
1
\end{array}\right] .
$$

Check whether the matrix you get is unitarily diagonalizable or not. $2 \frac{1}{2}$
3. (a) Write all possible Jordan canonical forms for a 5×5 matrix whose minimal polynomial is $(x-1)(x-2)(x-3)$ and the determinant is 12 .
(b) Check whether or not the matrix

$$
\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

is positive definite.
(c) Prove that, for any square matrix A, A and

A + I are not similar.
4. Write the singular value decomposition of the matrix

$$
\left[\begin{array}{cc}
-1 & 2 \\
1 & 2 \\
1 & 0
\end{array}\right]
$$

$$
5
$$

5. Which of the following statements are True, and which are False? Give reasons for your answers.10
(a) If T is a linear operator on a finite-dimensional vector space whose matrix with respect to some basis is the identity matrix, then the matrix of T is the identity matrix with respect to any basis.
(b) If A and B are $\mathrm{n} \times \mathrm{n}$ non-zero matrices, such that $A B$ is a diagonal matrix, then both A and B must be diagonal matrices.
(c) If two 4×4 matrices A and B have the same minimal polynomial, then A and B are similar.
(d) There is a real orthogonal matrix with one of the eigenvalues equal to -2 .
(e) $[1,2]$ is a generalised inverse of $[2,1]^{\mathrm{t}}$.
