BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

03 045

June, 2018

ELECTIVE COURSE : MATHEMATICS MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)

Note: Question no. 5 is compulsory. Attempt any four questions from questions no. 1 -4, 6 and 7. Use of calculators is not allowed.

1. (a) Using mathematical induction, prove that $10^{\mathrm{n}+1}+10^{\mathrm{n}}+1$ is divisible by $3, \forall \mathrm{n} \geq 1$.
(b) Check whether any group of order 44 has a proper normal subgroup or not.
(c) Find all the roots in R of $x^{2}-(1,1) \in R[x]$, where $\mathbf{R}=\mathbf{Z} \times \mathbf{Z}$. Also, find how many roots of $x^{2}-(2,1) \in R[x]$ are there in R.
2. (a) If G is a group of order 36 and H and K are its subgroups of orders 18 and 9 , then show that HK is a subgroup of G. Also show that $\mathrm{o}(\mathrm{H} \cap \mathrm{K}) \geq 3$.
(b) Consider $R=M_{2}(R)$, the ring of 2×2 matrices with real number entries. Find two non-zero elements $x, y \in R$ such that $x y=0$ and $\mathrm{yx} \neq 0$. Also check whether the set $\left\{\left.\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right] \right\rvert\, a, b \in \mathbf{R}\right\}$ is an ideal of R or not.
(c) Find the signature of $\left(\begin{array}{lllll}1 & 2 & 3 & 7 & 6 \\ 3 & 6 & 7 & 1 & 2\end{array}\right)$.
3. (a) Consider the ring Z. Let $I=4 Z$ and $J=6 Z$. Is $I J=I \cap J$? Give reasons for your answer. Further, if $I+J=\langle a\rangle$, find a. 3
(b) Give two distinct maximal ideals in the polynomial ring $\mathbf{R}[x]$, with justification.
(c) Let $S=\left\{\left.\frac{p}{q} \in \mathbf{Q} \right\rvert\,(\mathbf{q}, 5)=1\right\}$. Define a relation ' \sim ' on S by $\frac{p}{q} \sim \frac{r}{S}$ iff $S \mid(p s-q r)$. Show that ' \sim ' is an equivalence relation. Also find the equivalence class of 0 .
4. (a) Let D be a Euclidean domain, with Euclidean valuation d. Prove that for every integer n such that $d(1)+n \geq 0$, the function $f_{n}: D \backslash\{0\} \rightarrow Z: f_{n}(a)=d(a)+n$ is a Euclidean valuation on D .
(b) Use the Fundamental Theorem of Homomorphism to prove that $\mathbf{C}^{*} / \mathbf{S} \simeq \mathbf{R}^{+}$, where $\left(C^{*}, \cdot\right)$ is the group of non-zero complex numbers, $S=\left\{z \in C^{*}| | z \mid=1\right\}$, $\left(\mathrm{R}^{+}, \cdot\right)$ is the group of positive real numbers. 5
(c) List all the distinct proper ideals of $\mathbf{Z} / 12 \mathbf{Z}$.
5. Which of the following statements are true and which are false ? Justify your answers either with a short proof or with a counter-example.
(a) If G is a group of order 12 , then G has no element of order 5.
(b) Every non-trivial subgroup of an infinite group is infinite.
(c) The quotient field of $\mathbf{Z}[\sqrt{3}]$ has characteristic 3.
(d) The sum of units of an integral domain D, is a unit in D.
(e) Every finite ring is a field.
6. (a) Let S be a set with at least 3 elements and B be the set of bijective mappings of S onto itself. Prove that (B, o) is a group. Also check if (B, o) is abelian or not.
(b) Let $S=\{(x, y) \mid x, y \in \mathbf{R}\}$. Show that S is a ring with identity with the operations defined by

$$
\begin{aligned}
& (x, y)+(u, v)=(x+y, u+v) \\
& (x, y) .(u, v)=(x u-y v, x v+y u)
\end{aligned}
$$

7. (a) Consider the ring $R=Z_{2}[x] /\left\langle x^{8}-1\right\rangle$.
(i) Is R a finite ring?
(ii) Does R have zero divisors ?
(iii) Does R have nilpotent elements ?

Justify your answers.
(b) Let

$$
G=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & d
\end{array}\right] \right\rvert\, a, b, d \in \mathbf{R}, \mathrm{ad} \neq 0\right\} .
$$

Show that
$H=\left\{\left.\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right] \right\rvert\, b \in \mathbf{R}\right\}$
is a normal subgroup of G. Also give two distinct elements of G / H.

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)
सत्रांत परीक्षा
जून, 2018

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-06 : अमूर्त बीजगणित

समय : 2 घण्टे अधिकतम अंक : 50
(कुल का : 70\%)
नोट : प्रश्न सं. 5 करना अनिवार्य है / प्रश्न सं. 1-4, 6 और 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

1. (क) गणितीय आगमन का प्रयोग करते हुए, सिद्ध कीजिए कि $10^{\mathrm{n}+1}+10^{\mathrm{n}}+1,3$ से विभाज्य है, $\forall \mathrm{n} \geq 1$.
जाँच कीजिए कि कोटि 44 वाले किसी भी समूह का एक उचित प्रसामान्य उपसमूह है या नहीं । 3
(ग) $\mathrm{x}^{2}-(1,1) \in \mathrm{R}[\mathrm{x}]$ के R में सभी मूल ज्ञात कीजिए, जहाँ $\mathrm{R}=\mathbf{Z} \times \mathbf{Z}$ है । यह भी ज्ञात कीजिए कि $x^{2}-(2,1) \in R[x]$ के कितने मूल R में हैं । 4
2. (क) यदि G कोटि 36 वाला एक समूह है तथा H और K क्रमशः 18 और 9 कोटियों वाले इसके उपसमूह हैं, तो दर्शाइए कि HK, G का उपसमूह है। साथ ही, यह भी दर्शाइए कि $\mathrm{o}(\mathrm{H} \cap \mathrm{K}) \geq 3$ है।
(ख) मान लीजिए $\mathbf{R}=\mathbf{M}_{2}(\mathbf{R})$, वास्तविक संख्याओं की प्रविष्टियों वाले 2×2 आव्यूहों की वलंय है। दो ऐसे शून्येतर अवयव $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ ज्ञात कीजिए कि $\mathrm{xy}=0$ हो और $\mathrm{yx} \neq 0$ हो । साथ ही, इसकी भी जाँच कीजिए कि समुच्चय $\left\{\left.\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right] \right\rvert\, a, b \in \mathbf{R}\right\}, R$ की एक गुणजावली है या नहीं।
(ग) $\left(\begin{array}{lllll}1 & 2 & 3 & 7 & 6 \\ 3 & 6 & 7 & 1 & 2\end{array}\right)$ का चिह्नक ज्ञात कीजिए ।
3. (क) वलय Z पर विचार कीजिए । मान लीजिए $\mathrm{I}=4 \mathrm{Z}$ और $\mathrm{J}=6 \mathrm{Z}$ है । क्या $\mathrm{IJ}=\mathrm{I} \cap \mathrm{J}$ है ? अपने उत्तर के लिए कारण दीजिए। साथ ही, यदि $\mathrm{I}+\mathrm{J}=\langle\mathrm{a}\rangle$ है, तो a ज्ञात कीजिए।
(ख) पुष्टि देते हुए, बहुपद वलय $\mathbf{R}[\mathrm{x}]$ की दो अलग-अलग उच्चिष्ठ गुणजावलियाँ दीजिए।
(ग) मान लीजिए $\mathrm{S}=\left\{\left.\frac{\mathrm{p}}{\mathrm{q}} \in \mathbf{Q} \right\rvert\,(\mathrm{q}, 5)=1\right\}$ है । $\frac{\mathrm{p}}{\mathrm{q}} \sim \frac{\mathrm{r}}{\mathrm{s}}$ iff $\mathrm{S} \mid(\mathrm{ps}-\mathrm{qr})$ द्वारा S पर एक संबंध $\cdot \sim$ परिभाषित कीजिए। दर्शाइए कि ' \sim ' एक तुल्यता संबंध है । साथ ही, 0 का तुल्यता वर्ग भी ज्ञात कीजिए।
4. (क) मान लीजिए यूक्लिडीय मूल्यांकन d के साथ D एक यूक्लिडीय प्रांत है। सिद्ध कीजिए कि प्रत्येक ऐसे पूर्णांक n के लिए जिससे कि $\mathrm{d}(1)+\mathrm{n} \geq 0$ हो, तो फलन $f_{n}: D \backslash\{0\} \rightarrow Z: f_{n}(a)=d(a)+n, D$ पर एक यूक्लिडीय मूल्यांकन है।
(ख) $\mathbf{C}^{*} / \mathbf{S} \simeq \mathbf{R}^{+}$सिद्ध करने के लिए समाकारिता के मूल प्रमेय का प्रयोग कीजिए, जहाँ $\left(\mathbf{C}^{*}, \cdot\right)$ शून्येतर सम्मिश्र संख्याओं का समूह है, $S=\left\{z \in \mathbf{C}^{*}| | z \mid=1\right\}$, $\left(\mathrm{R}^{+}, \cdot\right)$ धनात्मक वास्तविक संख्याओं का समूह है।
(ग) $\mathbf{Z} / 12 \mathbf{Z}$ की सभी अलग-अलग उचित गुणजावलियों की सूची बनाइए।
5. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य? एक संक्षिप्त उपपत्ति देकर या एक प्रत्युदाहरण देकर, अपने उत्तरों की पुष्टि कीजिए।
(क) यदि G कोटि 12 वाला एक समूह है, तो G में कोटि 5 वाला कोई अवयव नहीं होगा ।
(ख) किसी अपरिमित समूह का प्रत्येक अतुच्छ उपसमूह अपरिमित होता है।
(ग) $\mathbf{Z}[\sqrt{3}]$ के विभाग क्षेत्र का अभिलक्षणिक 3 है।
(घ) किसी भी पूर्णांकीय प्रांत D की इकाइयों का योगफल D में एक इकाई होता है।
(ङ) प्रत्येक परिमित बलय एक क्षेत्र होता है।
6. (क) मान लीजिए S कम-से-कम 3 अवयवों वाला एक समुच्चय है तथा B, S के स्वयं पर एकैकी आच्छादक फलनों का समुच्चय है । सिद्ध कीजिए कि (B, o) एक समूह है। इसकी भी जाँच कीजिए यदि (B, o) आबेली है या नहीं ।
(ख) मान लीजिए $\mathrm{S}=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathbf{R}\}$ है। दर्शाइए कि S निम्नलिखित संक्रियाओं द्वारा परिभाषित एक तत्समकी वलय है :

$$
\begin{aligned}
& (x, y)+(u, v)=(x+y, u+v) \\
& (x, y) \cdot(u, v)=(x u-y v, x v+y u)
\end{aligned}
$$

7. (क) वलय $\mathrm{R}=\mathrm{Z}_{2}[\mathrm{x}] /<\mathrm{x}^{8}-1>$ पर विचार कीजिए ।
(i) क्या R एक परिमित वलय है ?
(ii) क्या R के शून्य के विभाजक हैं ?
(iii) क्या R के शून्यंभावी अवयव हैं ?

अपने उत्तरों की पुष्टि कीजिए।
(ख) मान लीजिए
$\mathrm{G}=\left\{\left.\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ 0 & \mathrm{~d}\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{b}, \mathrm{d} \in \mathbf{R}, \mathrm{ad} \neq \mathbf{0}\right\}$ है ।
दर्शाइए कि $H=\left\{\left.\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right] \right\rvert\, b \in \mathbf{R}\right\}$
G का एक प्रसामान्य उपसमूह है । इसके आगे, G / H
के दो अलग-अलग अवयव भी दीजिए।

