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BACHELOR’S DEGREE PROGRAMME

(BDP)
Term-End Examination
C Oas0sS ‘June, 2018

ELECTIVE COURSE : MATHEMATICS
MTE-02 : LINEAR ALGEBRA

Time : 2 hours Maximum Marks : 50
’ ' (Weightage : 70%)

Note : Attempt five questions in all. Question no. 7 is
compulsory. Answer any four questions from
questions no. 1 to 6. Use of calculators is not

- allowed.

1. (a) Check that the set
W = {(x;, X9, X3, X4) | X1 + X = 2xg}
is a subspace of R% Find a ,.basis of W.
Hence, find the dimension of W. . 5

() LetT : R3 - R3 be the linear transformation
defined by v
T(x,y,z)=(2Xx+y—2, X+Y, X+2).

Find the matrix of the transformation with-
respect to the ordered basis {vy, v, Vsh
where v;=(1,1,1), vo=(1,1, 0) and
v3 = (1, 0, 0). Is T invertible or not ? Justify
your answer. | 5
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2. (a) LetT:R*- R?be the linear transformation
defined by '

T(xq, X9, X3, X4) = (= X9, X, — Xy, X3).

Check that T4 = I. Also, find the minimal
polynomial of T. 5

(b)  Find the inverse of the matrix

1 2 0
A=|2 1 -1
0 1 2
using row reduction. 5

3. (a) Check whether the following system of

equations can be solved using Cramer’s rule :

2x+3y+z=11
X+y+2z=6
2Xx-y+2z=4

If the system can be solved by the rule, then
use it to obtain the solution. If the system
cannot be solved using Cramer’s rule, use

Gaussian elimination to solve it. 5

(b) Find the radius and the centre of the
circular section of the sphere |r| =4, cut off
by the plane r. (2i —j + 4k) = 3. 5
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4. (a)

Check whether or not the matrix

3 -2 0
A=|4 -3 O
4 -2 -1

- is diagonalisable.

(b)
5. (a)
(b)
6. (a)
(b)
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Check that T: R3 — R3, defined by
T(xq, X9, X3) = (X1 + X3, Xg + 2x3,
X1 —Xg —X3)
is a linear operator. Also find the null space
of T. '

Check whether the function f : R - R,
defined by f(x) = x3 + 1, is 1 - 1. Is it onto ?
Justify your answers.

Consider the linear operator

T: C% > C4, defined by ‘

T(z4, 29, 23, Z4) = (—i2Zg, 121, — iz4, z3).

Find T*(wy, Wy, W3, Wy), Where

w; € CVi=1,2,38,4 and check whether T is

self-adjoint under the standard inner
- product on c4 Further, check whether T is

unitary.

Find the orthogonal canonical reduction of the
quadratic form — x2 +y2 + 72 + 2xy — 2%z + 2yz.

6

Also, find its principal axes. 7
Check whether or not
i+j+k i-j i+j-2k
, and ———— form an
J3 J2 J6
orthonormal basis for R3. 3
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7. Which of the following statements are True and
which are False ? Justify your answers with a
short proof or by a counter-example. 5x2=10

(a) The relation ~ defined in R by ‘x ~ yifx>y
is an equivalence relation.

(b) There is no system of linear equations over
R that has exactly two solutions.

(¢) If the. characteristic polynomials of two
matrices are equal, their minimal polynomials
are also equal. ‘

(d) The determinant of any unitary matrix is 1.

(e) Any two real quadratic forms of the same rank
are equivalent over R.
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2. (%) g A T: R 5 R4,
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