BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

04505

June, 2018

ELECTIVE COURSE: MATHEMATICS MTE-02: LINEAR ALGEBRA

Time: 2 hours

Maximum Marks: 50

(Weightage: 70%)

Note: Attempt five questions in all. Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Use of calculators is not allowed.

Check that the set 1. (a)

> $W = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = 2x_3\}$ is a subspace of R4. Find a, basis of W. Hence, find the dimension of W.

5

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation (b) defined by

$$T(x, y, z) = (2x + y - z, x + y, x + z).$$

Find the matrix of the transformation with respect to the ordered basis {v1, v2, v3}, where $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$. Is T invertible or not? Justify your answer.

2. (a) Let $T: \mathbf{R}^4 \to \mathbf{R}^4$ be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3).$$

Check that $T^4 = I$. Also, find the minimal polynomial of T.

5

(b) Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

using row reduction.

5

3. (a) Check whether the following system of equations can be solved using Cramer's rule:

$$2x + 3y + z = 11$$

$$x + y + 2z = 6$$

$$2x - y + 2z = 4$$

If the system can be solved by the rule, then use it to obtain the solution. If the system cannot be solved using Cramer's rule, use Gaussian elimination to solve it.

5

(b) Find the radius and the centre of the circular section of the sphere $|\mathbf{r}| = 4$, cut off by the plane $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + 4\mathbf{k}) = 3$.

4. (a) Check whether or not the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 0 \\ 4 & -3 & 0 \\ 4 & -2 & -1 \end{bmatrix}$$

is diagonalisable.

5

(b) Check that $T: \mathbf{R}^3 \to \mathbf{R}^3$, defined by $T(x_1,\,x_2,\,x_3) = (x_1+x_3,\,x_2+2x_3,\,x_1-x_2-x_3)$

is a linear operator. Also find the null space of T.

5

5. (a) Check whether the function $f: \mathbf{R} \to \mathbf{R}$, defined by $f(x) = x^3 + 1$, is 1 - 1. Is it onto? Justify your answers.

4

(b) Consider the linear operator $T: \mathbf{C}^4 \to \mathbf{C}^4, \text{ defined by}$ $T(\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3, \mathbf{z}_4) = (-i\mathbf{z}_2, i\mathbf{z}_1, -i\mathbf{z}_4, \mathbf{z}_3).$ Find $T^*(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4), \text{ where}$ $\mathbf{w}_i \in \mathbf{C} \ \forall \ i=1,\,2,\,3,\,4 \text{ and check whether T is}$ self-adjoint under the standard inner product on \mathbf{C}^4 . Further, check whether T is unitary.

6

- **6.** (a) Find the orthogonal canonical reduction of the quadratic form $-x^2 + y^2 + z^2 + 2xy 2xz + 2yz$. Also, find its principal axes.
 - (b) Check whether or not $\frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}, \ \frac{\mathbf{i} \mathbf{j}}{\sqrt{2}} \quad \text{and} \quad \frac{\mathbf{i} + \mathbf{j} 2\mathbf{k}}{\sqrt{6}} \quad \text{form an orthonormal basis for } \mathbf{R}^3.$

- 7. Which of the following statements are *True* and which are *False*? Justify your answers with a short proof or by a counter-example. $5\times 2=10$
 - (a) The relation \sim defined in **R** by 'x \sim y if x \geq y' is an equivalence relation.
 - (b) There is no system of linear equations overR that has exactly two solutions.
 - (c) If the characteristic polynomials of two matrices are equal, their minimal polynomials are also equal.
 - (d) The determinant of any unitary matrix is 1.
 - (e) Any two real quadratic forms of the same rank are equivalent over **R**.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा जून, 2018

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02 : रैखिक बीजगणित

समय: 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: कुल पाँच प्रश्नों के उत्तर दीजिए । प्रश्न सं. 7 अनिवार्य है । प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों का प्रयोग करने की अनुमित नहीं है ।

- 1. (क) जाँच कीजिए कि क्या समुच्चय $W = \{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = 2x_3\}, \mathbf{R}^4$ की एक उपसमिष्ट है । W का एक आधार ज्ञात कीजिए । अतः, W की विमा ज्ञात कीजिए ।
 - (ख) मान लीजिए $T: \mathbf{R}^3 \to \mathbf{R}^3$ $T(x, y, z) = (2x + y z, x + y, x + z) \; \mathbf{g}$ ारा परिभाषित एक रैखिक रूपांतरण है । क्रमित आधार $\{v_1, v_2, v_3\}$, जहाँ $v_1 = (1, 1, 1), v_2 = (1, 1, 0)$ और $v_3 = (1, 0, 0)$ के सापेक्ष रूपांतरण का आव्यूह ज्ञात कीजिए । क्या T व्युत्क्रमणीय है या नहीं ? अपने उत्तर की पुष्टि कीजिए ।

2. (क) मान लीजिए $T: \mathbb{R}^4 \to \mathbb{R}^4$,

$$T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$$

द्वारा परिभाषित रैखिक रूपांतरण है । जाँच कीजिए कि ${
m T}^4={
m I}$ है या नहीं । ${
m T}$ का अल्पिष्ठ बहुपद भी ज्ञात कीजिए ।

5

(ख) पंक्ति समानयन से आव्यूह

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

का व्युत्क्रम ज्ञात कीजिए।

5

3. (क) जाँच कीजिए कि क्या निम्नलिखित समीकरणों का निकाय क्रेमर नियम से हल किया जा सकता है या नहीं:

$$2x + 3y + z = 11$$

 $x + y + 2z = 6$
 $2x - y + 2z = 4$

यदि निकाय इस नियम से हल किया जा सकता है, तो हल प्राप्त करने के लिए इसका प्रयोग कीजिए । यदि निकाय को क्रेमर नियम से हल नहीं किया जा सकता, तो इसे हल करने के लिए गाउसीय निराकरण का प्रयोग कीजिए ।

5

(ख) समतल $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + 4\mathbf{k}) = 3$ द्वारा गोले $|\mathbf{r}| = 4$ के काटे गए वृत्तीय परिच्छेद की त्रिज्या और केंद्र ज्ञात कीजिए।

			and the second of the second o	
	4.	(क)	जाँच कीजिए कि आव्यूह	
			$\mathbf{A} = \begin{bmatrix} 3 & -2 & 0 \\ 4 & -3 & 0 \\ 4 & -2 & -1 \end{bmatrix}$	
	.•		विकर्णनीय है या नहीं ।	5
	,	(ख)	जाँच कीजिए कि $T: \mathbf{R}^3 \to \mathbf{R}^3$, $T(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = (\mathbf{x}_1 + \mathbf{x}_3, \mathbf{x}_2 + 2\mathbf{x}_3,$	
			$\mathbf{x}_1 - \mathbf{x}_2 - \mathbf{x}_3$	
			से परिभाषित, एक रैखिक संकारक है। T की शून्य समष्टि भी ज्ञात कीजिए।	5
	5.	(क)	जाँच कीजिए कि क्या फलन $f: \mathbf{R} \to \mathbf{R}$, $f(\mathbf{x}) = \mathbf{x}^3 + 1$ से परिभाषित, $1-1$ है । क्या यह आच्छादक है ? अपने उत्तरों की पुष्टि कीजिए ।	
	,	· (ख)	रैखिक संकारक $T: \mathbb{C}^4 \to \mathbb{C}^4$ को लीजिए जो कि	
• **			$T(z_1,\ z_2,\ z_3,\ z_4)=(-iz_2,\ iz_1,\ -iz_4,\ z_3)$ से परिभाषित है । $T^*(w_1,\ w_2,\ w_3,\ w_4)$ ज्ञात कीजिए, जहाँ $w_i\in C\ \forall\ i=1,2,3,4$ और जाँच कीजिए कि क्या $T,\ C^4$ पर मानक आंतर गुणनफल के सापेक्ष स्वसंलग्न है । इसके आगे, जाँच कीजिए कि क्या T ऐकिक है ।	6
	6.	(क)	द्विघाती समघात $-x^2 + y^2 + z^2 + 2xy - 2xz + 2yz$ का लांबिक विहित समानयन ज्ञात कीजिए । इसके मुख्य अक्ष भी ज्ञात कीजिए ।	7
		(ख)	जाँच कीजिए कि क्या $\frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}, \ \frac{\mathbf{i}-\mathbf{j}}{\sqrt{2}}$ और	•
			$rac{\mathbf{i}+\mathbf{j}-2\mathbf{k}}{\sqrt{6}}$, \mathbf{R}^3 का प्रसामान्य लांबिक आधार बनाते	
	•		हैं या नहीं ।	3
`	MTE	E-02	7 P.T	O.

- 7. निम्नलिखित में से कौन-से कथन *सत्य* और कौन-से कथन असत्य हैं ? अपने उत्तरों की एक लघु उपपत्ति या एक प्रत्युदाहरण से पुष्टि कीजिए। 5×2=10
 - (क) संबंध ~, \mathbf{R} में 'x ~ y यदि x ≥ y' से परिभाषित, एक तुल्यता संबंध है ।
 - (ख) R पर ऐसा कोई भी रैखिक समीकरणों का निकाय नहीं है, जिसके ठीक-ठीक दो हल हों।
 - (ग) यदि दो आव्यूहों के अभिलक्षणिक बहुपद समान हैं, तो उनके अल्पिष्ठ बहुपद भी समान होंगे ।
 - (घ) किसी भी ऐकिक आव्यूह की सारणिक 1 होती है।
 - (ङ) समान जाति वाली कोई भी दो वास्तविक द्विघाती समघात **R** पर तुल्य होती हैं।