006.33

B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination June. 2018

BIMEE-013: FINITE ELEMENT ANALYSIS

Time: 3 hours Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. Discuss in detail about the concepts of FEM formulation. How is it that the FEM emerged as a powerful tool? Discuss major applications of FEM.
- 2. (a) How do you formulate a frame element that would be able to model a buckling problem? Explain.
 - (b) Discuss about Isoparametric elements.

 Describe its features and characteristics. 7
- 3. (a) Derive the stiffness matrix for a spring element consisting of 2 nodes (as shown in figure 1) with a single degree of freedom (axial deflection) at each node.

Figure 1

14

7

- (b) Distinguish between the following:
 - (i) Cartesian co-ordinate and Natural co-ordinate systems
 - (ii) Static analysis and Dynamic analysis

7

7

14

- 4. (a) Compare the variational and weighted residual methods in detail.
 - (b) What do you understand by finite element model? Explain modelling of mechanical components with a suitable example.
- 5. Figure 2 shows a truss consisting of three elements with $\frac{EA}{L}$ value of each as 1000 N/mm. Calculate the deflection at node 2. All dimensions are in mm .

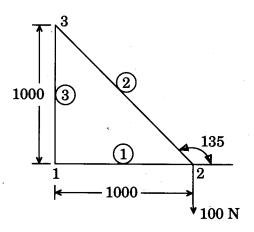


Figure 2

- **6.** (a) Develop stiffness matrix equation and shape functions for an axi-symmetric triangular element.
 - (b) What is connectivity in finite element models? Explain with a suitable example.
- 7. Write short notes on any **four** of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Dimensionability
 - (b) Galerkin approach
 - (c) Truss and frame
 - (d) Boundary condition
 - (e) Shape function
 - (f) FEA software packages