No. of Printed Pages : 4

BME-053

DIPLOMA IN MECHANICAL ENGINEERING (DME)

Term-End Examination

00943

June, 2018

BME-053 : APPLIED THERMAL ENGINEERING

Time : 2 hours

Maximum Marks: 70

Note: All questions are compulsory. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. Choose the correct answer from the given four alternatives. $7 \times 2=14$
 - (a) Which of the following gases has the maximum value of specific heat ratio (γ)?
 - (i) Oxygen
 - (ii) Helium
 - (iii) Methane
 - (iv) Carbon dioxide
 - (b) For the same maximum pressure and temperature of the cycle and for the same heat rejection, this air standard cycle has the maximum efficiency.
 - (i) Otto cycle
 - (ii) Diesel cycle
 - (iii) Dual cycle
 - (iv) Brayton cycle

BME-053

1

- (c) An ideal gas at 27°C is heated at constant pressure till the volume becomes three times. The temperature of the gas will then be
 - (i) 81°C
 - (ii) 900°C
 - (iii) 627°C
 - (iv) 927°C
- (d) High air-fuel ratio in gas turbine would
 - (i) increase thermal efficiency
 - (ii) increase power output
 - (iii) decrease the outlet temperature
 - (iv) All of the above
- (e) The thermal efficiency of theoretical Otto cycle
 - (i) increases with increase in compression ratio
 - (ii) increases with increase in isentropic index (γ)
 - (iii) does not depend upon the pressure ratio
 - (iv) follows all of the above
- (f) In a four-stroke cycle diesel engine, during suction stroke
 - (i) only air is sucked in
 - (ii) only fuel is sucked in
 - (iii) mixture of fuel and air is sucked in
 - (iv) None of the above

BME-053

(g)

For a petrol engine for vehicles, the air-fuel ratio for maximum power generation is of the order of

- (i) 8:1
- (ii) 12:1
- (iii) 18:1
- (iv) 20:1

2.

Answer any *two* of the following :

- $2 \times 7 = 14$
- (a) Explain the following terms as applied to I.C. engines :
 - (i) Bore
 - (ii) Stroke
 - (iii) TDC
 - (iv) Clearance volume
 - (v) Swept volume
 - (vi) Compression ratio
 - (vii) Piston speed
- (b) An inventor claims that a new heat cycle will develop 0.4 kW for a heat addition of 32.5 kJ/min. The temperature of heat source is 1990 K and that of sink is 850 K. Is his claim possible ? Justify your answer.
- (c) The efficiency of an Otto cycle is 60% and $\gamma = 1.5$. What is the compression ratio ?

3. Answer any *two* of the following :

2×7=14

(a) What do you mean by stoichiometric air-fuel ratio ? Enumerate the methods by which air-fuel ratio can be calculated when analysis of combustion products is known.

BME-053

P.T.O.

- (b) The volumetric analysis of a fuel gas is : $CO_2 = 14\%$, CO = 1%, $O_2 = 5\%$, and $N_2 = 80\%$. Calculate the fuel gas composition by weight.
- (c) With the help of a neat sketch, explain the working principle of a simple carburettor.
- **4.** Answer any *two* of the following : $2 \times 7 = 14$
 - (a) What are the various desired properties of a lubricant ? Explain how additives help to achieve the desired properties.
 - (b) Why is cooling necessary for I.C. engines ? What kind of cooling system is employed in automobile vehicles ? Explain any one of them with a neat diagram.
 - (c) Describe with a neat sketch the construction and working principle of a single-stage single-acting reciprocating air compressor.
- 5. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Open cycle gas turbine
 - (b) Super charger
 - (c) Oil filters
 - (d) Knocking
 - (e) Battery ignition system
 - (f) Nozzle

BME-053

4