BIEEE-015

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

June, 2018

BIEEE-015 : STOCHASTIC CONTROL SYSTEMS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Symbols used have their usual meanings.

- 1. (a) Define the expected value of Discrete Random Variable and Continuous Random Variable.
 - (b) Consider a random process X(t). $X(t) = \xi \cos(\omega t) = f(\xi, t)$ where ω is constant, ξ is a random variable uniformly distributed in interval [-1, 1]. 7

2. Explain the Gauss-Markov sequence model in detail. 14

- **3.** (a) What is the concept of optimal smoothing for discrete linear systems ? 7
 - (b) Explain the different types of smoothing techniques which are optimal in nature. 7

BIEEE-015

1

P.T.O.

7

- 4. (a) Differentiate between "white noise" and "coloured noise".
 - (b) Discuss the role of white noise in modelling stochastic systems. 10
- 5. Show that the output of a fixed lag smoother driven from a Kalman filter with the smoother states instantaneously reset to zero (or some arbitrary values) at k = j yield the correct fixed lag estimates for k ≥ j + N.
- Enumerate the different methods used for stochastic optimal control in discrete linear system.
 14
- 7. Write short notes on any *two* of the following : $2 \times 7 = 14$
 - (a) Important Characteristics of Wiener Filter
 - (b) Linear Quadratic Gauss Problem
 - (c) Random Processes

BIEEE-015