B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination
Din415 June, 2018

BIEEE-002 : DIGITAL CONTROL SYSTEM

Time : 3 hours
Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. Give the block-diagram representation of the state-model of a discrete-time multivariable LTI system. Also find the solution of the state equation of a discrete-time LTI system by using z-transform approach.
2. Consider the system described by the equations

$$
\begin{aligned}
& x_{1}(k+1)=2 x_{1}(k)+0.5 x_{2}(k)-5 \\
& x_{2}(k+1)=0.8 x_{2}(k)+2
\end{aligned}
$$

Investigate the stability of the equilibrium state using Lyapunov equation. 10

BIEEE-002
1
P.T.O.
3. Obtain the transfer function description for the following system :

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
\frac{1}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(k)} \\
& \mathbf{y}(\mathbf{k})=2 \mathbf{x}_{1}(\mathrm{k})
\end{aligned}
$$

4. Discuss the Jury's stability criterion. Also investigate the stability of the discrete-time system described by the characteristic polynomial

$$
P(z)=3 z^{4}+6 z^{3}+(1+4 z)+10 z^{2}
$$

5. Solve for $y(k)$ when

$$
y(k)=r(k)-r(k-1)-y(k-1) ; k \geq 0
$$

where,

$$
\mathrm{r}(\mathrm{k})=\left\{\begin{array}{lc}
1 ; & \mathrm{k} \text { even } \\
0 ; & \mathrm{k} \text { odd }
\end{array}\right.
$$

$$
\begin{equation*}
\text { and } y(-1)=r(-1)=0 \tag{10}
\end{equation*}
$$

6. Find $y(z)$ for the sampled-data closed-loop system of Figure 1.

Figure 1
7. A continuous-time plant described by the equation

$$
\dot{y}=-y+u+w
$$

is to be controlled by a digital computer. y is the output, u is the input and w is the disturbance signal. Sampling interval $T=1$ sec. Obtain a discrete-time state-variable model of the plant.
8. How does the sampling period influence the controllability and observability of the sampled system?10
9. Write short notes on any two of the following :
(a) Stability Improvement by State-Feedback
(b) Optimal Digital Control
(c) Bilinear Transformation

