No. of Printed Pages : 2

BIELE-009

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00433

June, 2018

BIELE-009 : QUANTUM COMMUNICATION

T	'ime	:	\mathcal{B}	hours

Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of scientific calculator is permitted.

1.	Diffe	5+5=10	
	(a)	Pure states and Mixed states	
	(b)	Observables and Commutivity	
2.	State signif quan	the Stinespring theorem and explain ficance in the evolution of open syst	its æm 10
9	F renla	in the manage for an adding alongical h	· • 4

3. Explain the process for encoding classical bits into the z-axis spin projection of an electron. 10

BIELE-009

P.T.O.

- 4. Explain the procedure involved in the process of encoding and decoding the quantum states. 10
- 5. State von Neumann entropy. Derive the relationship between pure state ensemble compression with von Neumann entropy. 3+7=10
- 6. Explain the Holevo-Schumacher-Westmoreland theorem for classical channel capacity of quantum channel. 10
- 7. What are the notions of channel additivity and explain the role of entanglement in calculating quantum channel capacity?
 4+6=10
- 8. Explain Calderbank-Shor-Steane (CSS) codes used for quantum coding. 10
- **9.** State the following : 5+5=10
 - (a) King-Rusaki-Suarez-Werner Qubit channel representation theorem
 - (b) Kraus channel representation
- **10.** Write short notes on any *two* of the following : 5+5=10
 - (a) Partial Trace Operator
 - (b) Scaling Issues in Hilbert Space
 - (c) Density Matrix
 - (d) Projective Measurements