No. of Printed Pages : 2

BIELE-004

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00813

June, 2018

BIELE-004 : RF CIRCUITS

Time : 3 hours

Maximum Marks: 70

- Note: Attempt any seven questions. All questions carry equal marks. Missing data may be suitably assumed. Use of scientific calculators is permitted.
- 1. Explain the characterization of the following IC components at Radio Frequency (RF): 5+5=10
 - (a) Capacitors
 - (b) Transformers
- Determine the transmission [ABCD] and the hybrid [h] matrix for a generic T-network when represented in 2-port network form. 5+5=10
- **3.** Mathematically explain the noise model for the passive and the active components. 10

BIELE-004

P.T.O.

4.	Explain the power constrained and noise optimization concept as applicable to design of high frequency amplifiers.	10
5.	What are mixers ? Explain, with the help of a neatly labelled circuit diagram, the operation of a multiplier based mixer. $3+7=$	-10
6.	Explain the operation and derive the expression for the efficiency of a class-A power amplifier.	10
7.	With the help of neatly labelled circuit diagram and characteristic curve, explain the operation of a negative resistance oscillator.	10
8.	What are resonators ? Differentiate between resonators and oscillators. Explain static moduli synthesis. $2+3+5=$:10

- **9.** Write short notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Phase Noise Considerations in Synthesizers
 - (b) Class-F Amplifiers
 - (c) Sub-Sampling Mixers
 - (d) Transmission Line at RF