No. of Printed Pages: 7

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME)

Term-End Examination

June, 2018

00103

BET-037 : FLUID MECHANICS

Time : 2 hours

Maximum Marks : 70

BET-037

Note : Answer **all** questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. Choose the correct answer from the given alternatives : $14 \times 1=14$
 - (a) An ideal fluid is defined as the fluid which
 - (i) is compressible
 - (ii) is incompressible
 - (iii) is incompressible and non-viscous
 - (iv) has negligible surface tension
 - (b) Kinematic viscosity is defined as equal to
 - (i) dynamic viscosity × density
 - (ii) dynamic viscosity/density
 - (iii) dynamic viscosity × pressure
 - (iv) pressure × density

BET-037

P.T.O.

- (c) Dynamic viscosity has the dimensions as
 - (i) MLT^{-2}
 - (ii) $ML^{-1}T^{-1}$
 - (iii) $ML^{-1}T^{-2}$
 - (iv) $M^{-1}L^{-1}T^{-1}$
- (d) Stoke is the unit of
 - (i) surface tension
 - (ii) dynamic viscosity
 - (iii) kinematic viscosity
 - (iv) None of the above
- (e) Surface tension has the units of
 - (i) force per unit area
 - (ii) force per unit length
 - (iii) force per unit volume
 - (iv) None of the above
- (f) Atmospheric pressure head in terms of water column is
 - (i) 7.5 m
 - (ii) 8.5 m
 - (iii) 9·81 m
 - (iv) 10·3 m

BET-037

- (g) Bernoulli's theorem deals with the law of conservation of
 - (i) mass
 - (ii) momentum
 - (iii) energy
 - (iv) None of the above
- (h) The range for coefficient of discharge for a venturimeter is
 - (i) 0.6 to 0.7
 - (ii) 0.7 to 0.8
 - (iii) 0.8 to 0.9
 - (iv) 0.95 to 0.99
- (i) Hydraulic gradient line represents the sum of
 - (i) pressure head and kinetic head
 - (ii) kinetic head and datum head
 - (iii) pressure head, kinetic head and datum head
 - (iv) pressure head and datum head
- (j) The loss of head due to sudden expansion of a pipe is given by
 - (i) $h_{L} = \frac{v_{1}^{2} v_{2}^{2}}{2g}$

(ii)
$$h_{\rm L} = \frac{0.5 v_1^2}{2g}$$

(iii)
$$h_{\rm L} = \frac{(v_1 - v_1)^2}{2g}$$

(iv) None of the above

BET-037

P.T.O.

(k) The critical depth in a rectangular channel is given by

(i)
$$\left(\frac{q^2}{g}\right)^{1/2}$$

(ii) $\left(\frac{q^2}{g}\right)^{1/3}$
(iii) $\left(\frac{q^2}{g}\right)^{2/3}$
(iii) $\left(\frac{q^2}{g}\right)^{1/3}$

(iv)
$$\left(\frac{\mathbf{q}}{\mathbf{g}}\right)$$

(l) The hydraulic depth is given by

(i)
$$\frac{P}{A}$$

(ii) $\frac{P^2}{A}$
(iii) $\frac{A}{P}$

(iv) $\sqrt{\frac{A}{P}}$

- where, P = Wetted perimeter A = Area of flow
- (m) Orifices are used to measure
 - (i) Velocity
 - (ii) Pressure
 - (iii) Viscosity
 - (iv) Rate of flow

BET-037

- (n) The term $\frac{v^2}{2g}$ is known as
 - (i) kinetic energy
 - (ii) pressure energy
 - (iii) kinetic energy per unit weight
 - (iv) None of the above

2. Answer any *two* of the following :

2×7=*1*4

(a) Define the following fluid properties :Density, weight density, specific volume and

specific gravity of a fluid.

- (b) Explain the following : Newtonian and Non-Newtonion fluids and Vapour Pressure
- (c) Calculate the density, specific weight and weight of one litre of petrol of specific gravity = 0.7.
- **3.** Answer any *two* of the following : $2 \times 7 = 14$
 - (a) A 25 cm dia pipe carries oil of sp.gr. 0.9 at a velocity of 3 m/s. At another section the dia is 20 cm. Find the velocity at this section and also mass rate of flow of oil.
 - (b) Derive Bernoulli's equation for steady flow of an incompressible fluid.

BET-037

5

P.T.O.

- (c) A pipe through which water is flowing, is having diameter 600 mm at the upper end and 300 mm at the lower end, respectively. The length of pipe is 100 m and rate of flow of water is 50 litre/s. The pipe has a slope of 1 in 30. Find the pressure at the lower end if the pressure at the higher level is 19.62 N/cm².
- **4.** Answer any *two* of the following : $2 \times 7 = 14$
 - (a) A tank has two identical orifices in one of its vertical sides. The upper orifice is 3 m below the water surface and lower one is 5 m below the water surface. If the value of C_v for each orifice is 0.96, find the point of intersection of the two jets.
 - (b) Obtain an expression for absolute pressure head at vena-contracta for an external mouthpiece.
 - (c) An orifice of diameter 150 mm is filled at the bottom of a boiler drum of length 8 m and of diameter 3 m. The drum is horizontal and contains water up to a height of 2.4 m. Find the time required to empty the boiler. Take $C_d = 0.6$.

BET-037

5. Answer any *two* of the following :

- (a) Calculate the discharge through a pipe of diameter 200 mm when the difference of pressure head between the two ends of a pipe 500 m apart is 4 m of water. Take the value of f = 0.009 in the formula $h_f = \frac{4f \ l \ v^2}{2gd}$.
- (b) Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a diameter of 400 mm. The rate of flow of water through the pipe is 250 litres/second.
- (c) Find the discharge through a rectangular channel of width 2 m, having a bed slope of 4 in 8000. The depth of flow is 1.5 m and take the value of N in Manning's formula as 0.012.

BET-037

2×7=14

1,000

7