DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI/ ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination
June, 2018
aロ3r3
BET-021 : MATHEMATICS - II
Time : 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions out of the remaining. Use of scientific calculator is permitted.

1. Answer any seven parts of the following : $7 \times 2=14$
(a) Show that the function

$$
x \cdot \frac{3^{x}-1}{3^{x}+1} \text { is even. }
$$

(b) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\log (1+\alpha x)}{e^{2 x}-1}
$$

(c) A function $\phi(x)$ is defined as follows:

$$
\begin{aligned}
\phi(x) & =\frac{\tan 3 x}{4 x}, \text { when } x \neq 0 \\
& =\frac{4}{3}, \text { when } x=0
\end{aligned}
$$

Examine the continuity of $\phi(x)$ at $x=0$.
(d) Find the derivative of $\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)$.
(e) Evaluate :

$$
\int \frac{\sqrt{\tan x}}{\sin 2 x} d x
$$

(f) Find the conjugate of $\frac{x+i y}{x-i y}$ (x, y are real).
(g) Evaluate :

$$
\int_{1}^{\mathrm{e}} \frac{d x}{x(1+\log x)^{2}}
$$

(h) Find the matrices A and B for which :

$$
\begin{aligned}
& A+B=\left[\begin{array}{lll}
1 & 5 & 10 \\
5 & 9 & 8
\end{array}\right] \text { and } \\
& A-B=\left[\begin{array}{ccc}
-1 & -1 & -4 \\
1 & 1 & 6
\end{array}\right]
\end{aligned}
$$

(i) A particle is moving in a straight line and its distance $S \mathrm{~cm}$ from a fixed point in the line after t seconds is given by, $S=12 t-15 t^{2}+4 t^{3}$. Find the velocity and acceleration of the particle after 3 seconds.
(j) The index numbers of 4 commodities were $92,125,180$ and 80 , and the weights 12,7 , 6 and 9 are assigned to these commodities. Find the combined arithmetic average index number.
2. (a) Given that $y=(3 x+1)^{2}+(2 x-1)^{3}$, find $d y / d x$ and the points on the curve for which $d y / d x=0$.
(b) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{x} \quad 7+7=14
$$

3. (a) If $y=\sqrt{3 x}-\sqrt{3 / x}+\frac{x+6}{6-x}$, find the value of $\left[\frac{d y}{d x}\right]_{x=3}$.
(b) Find the area included between $y^{2}=9 x$ and $y=x$.
$7+7=14$
4. (a) Verify Rolle's theorem for the function

$$
f(x)=x(x-3)^{2} \text { in the interval }[0,3] .
$$

(b) Evaluate :

$$
\int \log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{a}^{2}}\right) \mathrm{dx} \quad 7+7=14
$$

5. (a) Evaluate :

$$
\int_{1}^{2} 5 x^{2} d x
$$

as the limit of sums.
(b) If n is a positive integer, prove that

$$
\begin{aligned}
& \left(\frac{1+\sin \theta+i \cos \theta}{1+\sin \theta-i \cos \theta}\right)^{n}=(\sin \theta+i \cos \theta)^{n} \\
& \quad=\cos \left(\frac{n \pi}{2}-n \theta\right)+i \sin \left(\frac{n \pi}{2}-n \theta\right) \cdot 7+7=14
\end{aligned}
$$

6. (a) Show that:

$$
\left|\begin{array}{lll}
b+c & a+b & a \\
c+a & b+c & b \\
a+b & c+a & c
\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c
$$

(b) Compute A^{-1} for the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

Hence solve the system of equations

$$
\begin{aligned}
& y+2 z+8=0, \quad x+2 y+3 z+14=0,7 \\
& 3 x+y+z+8=0 .
\end{aligned} \quad 7+7=14 . \quad \begin{aligned}
& y+2
\end{aligned}
$$

7. (a) The following is the frequency table showing the heights of 200 boys :

Heights (inches)	No. of Students
53	7
55	14
57	31
59	60
61	52
63	29
65	4
67	3

Calculate Mean and Standard deviation.
(b) Calculate the Mean Deviation of the following values about the median :

$$
8,15,53,49,19,62,7,15,95,77 . \quad 7+7=14
$$

