DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DCSVI / ACCLEVI / ACCEVI / ACC

Term-End Examination

June, 2018

00373

BET-021: MATHEMATICS - II

Time: 2 hours

Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Attempt any **four** questions out of the remaining. Use of scientific calculator is permitted.

1. Answer any **seven** parts of the following:

 $7 \times 2 = 14$

(a) Show that the function

$$x \cdot \frac{3^x - 1}{3^x + 1}$$
 is even.

(b) Evaluate:

$$\lim_{x\to 0}\frac{\log{(1+\alpha x)}}{e^{2x}-1}$$

(c) A function $\phi(x)$ is defined as follows:

$$\phi(x) = \frac{\tan 3x}{4x}, \text{ when } x \neq 0$$
$$= \frac{4}{3}, \text{ when } x = 0$$

Examine the continuity of $\phi(x)$ at x = 0.

- (d) Find the derivative of $\tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right)$.
- (e) Evaluate:

$$\int \frac{\sqrt{\tan x}}{\sin 2x} \, dx$$

- (f) Find the conjugate of $\frac{x + iy}{x iy}$ (x, y are real).
- (g) Evaluate:

$$\int_{1}^{e} \frac{dx}{x(1 + \log x)^2}$$

(h) Find the matrices A and B for which:

$$A + B = \begin{bmatrix} 1 & 5 & 10 \\ 5 & 9 & 8 \end{bmatrix}$$
 and
$$A - B = \begin{bmatrix} -1 & -1 & -4 \\ 1 & 1 & 6 \end{bmatrix}$$

(i) A particle is moving in a straight line and its distance S cm from a fixed point in the line after t seconds is given by, $S = 12t - 15t^2 + 4t^3$. Find the velocity and acceleration of the particle after 3 seconds.

- (j) The index numbers of 4 commodities were
 92, 125, 180 and 80, and the weights 12, 7,
 6 and 9 are assigned to these commodities.
 Find the combined arithmetic average index number.
- 2. (a) Given that $y = (3x + 1)^2 + (2x 1)^3$, find dy/dx and the points on the curve for which dy/dx = 0.
 - (b) Evaluate:

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - \sqrt[3]{1-x}}{x}$$
 7+7=14

3. (a) If
$$y = \sqrt{3x} - \sqrt{3/x} + \frac{x+6}{6-x}$$
, find the value of $\left[\frac{dy}{dx}\right]_{x=3}$.

- (b) Find the area included between $y^2 = 9x$ and y = x. 7+7=14
- 4. (a) Verify Rolle's theorem for the function $f(x) = x(x-3)^2 \text{ in the interval } [0, 3].$
 - (b) Evaluate:

$$\int \log \left(x + \sqrt{x^2 + a^2} \right) dx \qquad 7+7=14$$

BET-021

5. (a) Evaluate:

$$\int_{1}^{2} 5x^{2} dx$$

as the limit of sums.

(b) If n is a positive integer, prove that

$$\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^{n} = (\sin\theta+i\cos\theta)^{n}$$
$$=\cos\left(\frac{n\pi}{2}-n\theta\right)+i\sin\left(\frac{n\pi}{2}-n\theta\right). 7+7=14$$

6. (a) Show that:

$$\begin{vmatrix} b+c & a+b & a \\ c+a & b+c & b \\ a+b & c+a & c \end{vmatrix} = a^3+b^3+c^3-3abc$$

(b) Compute A^{-1} for the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}.$$

Hence solve the system of equations

$$y + 2z + 8 = 0$$
, $x + 2y + 3z + 14 = 0$, $7 + 7 = 14$

7. (a) The following is the frequency table showing the heights of 200 boys:

Heights (inches)	No. of Students
53	7
55	14
57	31
59	60
61	52
63	29
65	. 4
67	3

Calculate Mean and Standard deviation.

- (b) Calculate the Mean Deviation of the following values about the median:
 - 8, 15, 53, 49, 19, 62, 7, 15, 95, 77.

7+7=14