No. of Printed Pages: 6

BET-011

DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination

00913

June, 2018

BET-011: MATHEMATICS - I

Time: 2 hours

Maximum Marks: 70

Note: Question number 1 is **compulsory**. Attempt any **four** questions out of the remaining questions. Use of scientific calculator is permitted.

- Choose the correct answer from the given four alternatives. (Answer any seven of the following):
 - (i) In Figure 1, if OA = 5 cm, AB = 8 cm, and OD is perpendicular to AB, then CD is equal to
 - (a) 2 cm
 - (b) 3 cm
 - (c) 4 cm
 - (d) 5 cm

Figure 1

- (ii) $\cos 60^{\circ} + \sin 30^{\circ} + \cos^2 30^{\circ}$ is equal to
 - (a) $\frac{7}{4}$
 - (b) $\frac{4}{7}$
 - (c) $\frac{6}{7}$
 - (d) $\frac{2\sqrt{3}}{21}$
- (iii) If $\sin (A B) = \frac{1}{2}$ and $\sin A = \frac{1}{\sqrt{2}}$, then the angles A and B respectively are
 - (a) $15^{\circ}, 45^{\circ}$
 - (b) 45°, 15°
 - (c) $30^{\circ}, 60^{\circ}$
 - (d) $60^{\circ}, 30^{\circ}$
- (iv) Which of the following is **not** an example of a scalar quantity?
 - (a) Work
 - (b) Force
 - (c) Power
 - (d) Time
- (v) The gradient of a line parallel to y-axis is

2

- (a) 1
- (b) 0
- (c) ∞
- (d) None of these

(vi)	The area of the circle having centre at	t (1,	2)
	and passing through (4, 6) is		-

- (a) 5π
- (b) 10π
- (c) 25π
- (d) None of these

(vii) The focus of the parabola
$$(y-1)^2 = 12(x-2)$$
 is

- (a) (2, 1)
- (b) (1, -1)
- (c) (5, 1)
- (d) (3, 0)

(viii) The latus rectum of the ellipse
$$5x^2 + 9y^2 = 45$$
 is

(a)
$$\frac{5}{2}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{2}{2}\sqrt{5}$$

(d)
$$\frac{\sqrt{5}}{3}$$

(ix) The number of roots of the equation
$$\frac{(x+2) (x-5)}{(x-3) (x+6)} = \frac{x-2}{x+4}$$
 is

- (x) When three times a certain number is added to twice its reciprocal, the result is 5. Find the number.
 - (a) 1 and $\frac{2}{3}$
 - (b) 1 only
 - (c) $\frac{2}{3}$ only
 - (d) None of these
- 2. (a) The arithmetic mean of two numbers is 34 and geometric mean is 16. What are the numbers?
 - (b) Three numbers are in the ratio 2:5:7. If 7 is subtracted from the second, the resulting numbers form an arithmetic sequence. Determine the original numbers.
 - (c) The sum of first three terms of a GP is 26 and the sum of first six terms of the GP is 728. What is the common ratio and the first term of the GP?

 4+5+5
- 3. (a) Find a vector in the direction of vector $\overrightarrow{\mathbf{a}} = \hat{\mathbf{i}} 2 \hat{\mathbf{j}}$ that has magnitude 7 units.
 - (b) Find the projection of the vector $\overrightarrow{\mathbf{a}} = 2 \hat{\mathbf{i}} + 3 \hat{\mathbf{j}} + 2 \hat{\mathbf{k}} \text{ on the vector}$ $\overrightarrow{\mathbf{b}} = \hat{\mathbf{i}} + 2 \hat{\mathbf{j}} + \hat{\mathbf{k}}.$

(c) Find a unit vector perpendicular to each of the vectors
$$\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$$
 and $\overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}}$, where $\overrightarrow{\mathbf{a}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ and

4. (a) If
$$\cos \theta = \frac{3}{5}$$
, then find the value of
$$\frac{\sin \theta \tan \theta + 1}{2 \tan^2 \theta}$$
.

 $\overrightarrow{\mathbf{b}} = \hat{\mathbf{i}} + 2\hat{\mathbf{i}} - 2\hat{\mathbf{k}}$

(b) Prove that

$$\frac{\sin \theta}{1 - \cot \theta} + \frac{\cos \theta}{1 - \tan \theta} = \sin \theta + \cos \theta.$$

- (c) Find out the equation of the straight line passing through (1, 2) and perpendicular to x + y + 7 = 0.
- 5. (a) Find out the equation of the circle through the point (4, 5) and having centre at (2, 2).
 - (b) Find the vertex, focus and directrix of the parabola $(y + 3)^2 = 2(x + 2)$.
 - (c) Find the foci of the ellipse

$$25x^2 + 9y^2 - 150x - 90y + 225 = 0.$$
 $4+5+5$

4+5+5

6. (a) Find the coefficient of x^4 in

$$\left(\frac{x}{2}-\frac{3}{x^2}\right)^{10}.$$

(b) Find the coefficient of the term independent of x in the expansion of

$$\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}.$$

(c) If the coefficient of x^7 and x^8 in $\left(2 + \frac{x}{3}\right)^n$ are equal, then find out the value of n. 4+5+5