No. of Printed Pages : 6

DIPLOMA IN CIVIL ENGINEERING (DCLE(G))/ DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI /
 DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination
$\square \square 913$
June, 2018

BET-011 : MATHEMATICS - I

Time : 2 hours

Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four questions out of the remaining questions. Use of scientific calculator is permitted.

1. Choose the correct answer from the given four alternatives. (Answer any seven of the following) :
(i) In Figure 1, if $\mathrm{OA}=5 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$, and $O D$ is perpendicular to $A B$, then $C D$ is equal to
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm

Figure 1
(ii) $\cos 60^{\circ}+\sin 30^{\circ}+\cos ^{2} 30^{\circ}$ is equal to
(a) $\frac{7}{4}$
(b) $\frac{4}{7}$
(c) $\frac{6}{7}$
(d) $\frac{2 \sqrt{3}}{21}$
(iii) If $\sin (A-B)=\frac{1}{2}$ and $\sin A=\frac{1}{\sqrt{2}}$, then the angles A and B respectively are
(a) $15^{\circ}, 45^{\circ}$
(b) $45^{\circ}, 15^{\circ}$
(c) $30^{\circ}, 60^{\circ}$
(d) $60^{\circ}, 30^{\circ}$
(iv) Which of the following is not an example of a scalar quantity?
(a) Work
(b) Force
(c) Power
(d) Time
(v) The gradient of a line parallel to y-axis is
(a) 1
(b) 0
(c) ∞
(d) None of these
(vi) The area of the circle having centre at (1, 2) and passing through $(4,6)$ is
(a) 5π
(b) 10π
(c) 25π
(d) None of these
(vii) The focus of the parabola
$(y-1)^{2}=12(x-2)$ is
(a) $(2,1)$
(b) $(1,-1)$
(c) $(5,1)$
(d) $(3,0)$
(viii) The latus rectum of the ellipse $5 x^{2}+9 y^{2}=45$ is
(a) $\frac{5}{3}$
(b) $\frac{10}{3}$
(c) $\frac{2}{3} \sqrt{5}$
(d) $\frac{\sqrt{5}}{3}$
(ix) The number of roots of the equation $\frac{(x+2)(x-5)}{(x-3)(x+6)}=\frac{x-2}{x+4}$ is
(a) 3
(b) 2
(c) 1
(d) 0
(x) When three times a certain number is added to twice its reciprocal, the result is 5. Find the number.
(a) 1 and $\frac{2}{3}$
(b) 1 only
(c) $\frac{2}{3}$ only
(d) None of these
2. (a) The arithmetic mean of two numbers is 34 and geometric mean is 16 . What are the numbers?
(b) Three numbers are in the ratio 2:5:7. If 7 is subtracted from the second, the resulting numbers form an arithmetic sequence. Determine the original numbers.
(c) The sum of first three terms of a GP is 26 and the sum of first six terms of the GP is 728. What is the common ratio and the first term of the GP? $4+5+5$
3. (a) Find a vector in the direction of vector $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}$ that has magnitude 7 units.
(b) Find the projection of the vector

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}} \text { on the vector } \\
& \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}}
\end{aligned}
$$

(c) Find a unit vector perpendicular to each of the vectors $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$, where

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}=3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}} \text { and } \\
& \overrightarrow{\mathbf{b}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}} .
\end{aligned}
$$

$$
4+5+5
$$

4. (a) If $\cos \theta=\frac{3}{5}$, then find the value of

$$
\frac{\sin \theta \tan \theta+1}{2 \tan ^{2} \theta} .
$$

(b) Prove that

$$
\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}=\sin \theta+\cos \theta .
$$

(c) Find out the equation of the straight line passing through (1,2) and perpendicular to $x+y+7=0$.
$4+5+5$
5. (a) Find out the equation of the circle through the point $(4,5)$ and having centre at $(2,2)$.
(b) Find the vertex, focus and directrix of the parabola $(y+3)^{2}=2(x+2)$.
(c) Find the foci of the ellipse

$$
25 x^{2}+9 y^{2}-150 x-90 y+225=0 . \quad 4+5+5
$$

6. (a) Find the coefficient of x^{4} in

$$
\left(\frac{\mathrm{x}}{2}-\frac{3}{\mathrm{x}^{2}}\right)^{10}
$$

(b) Find the coefficient of the term independent of x in the expansion of

$$
\left(\sqrt{\frac{\mathrm{x}}{3}}+\frac{3}{2 \mathrm{x}^{2}}\right)^{10}
$$

(c) If the coefficient of x^{7} and x^{8} in $\left(2+\frac{x}{3}\right)^{n}$ are equal, then find out the value of n. $4+5+5$

