DIPLOMA IN CIVIL ENGINEERING DCLE（G）／DCLEVI

ロロア93 Term－End Examination

June， 2018

BCE－045 ：CONSTRUCTION DRAWING

Time ： 2 hours
Maximum Marks ： 70
Note：Part A is to be attempted on answer script and Part B on drawing sheet．Use of－calculator is allowed．Assume suitable data wherever necessary．

PART A

Attempt any five questions．
1．Describe as to how a good drawing can be prepared．7

2．Give the symbols for any seven of the following： 7
（i）Concrete
（ii）Earth
（iii）Brick work
（iv）Metal section
（v）W．C．
（vi）Urinal
（vii）Two way switch
（viii）Bracket fan
（ix）Sand
（x）Shower head
BCE－045
3. Mention various types of staircase and explain any one type by means of neat sketches in plan and elevation.
4. Define Lap Joint and draw plan of a Lap Joint with steel strap and bolt.
5. Define an Arch. What are the advantages in constructing an arch in place of a lintel or a beam?
6. Write full forms of any seven of the following abbreviations :
(i) STD
(ii) GL
(iii) APPD
(iv) C / C
(v) SYM
(vi) SCR
(vii) THK
(viii) GCI
(ix) CHKD
(x) TYP
7. What are various types of wooden trusses ? Explain any one with the help of neat sketches.

PART B

Question no. 8 is compulsory. Attempt any one question from the remaining. Assume suitable scale and mention it.
8. A simply supported RCC beam has the following data:
Size of beam $=300 \times 500 \mathrm{~mm}$
Clear span $=5.00$ Metre
Bearing on wall $=300 \mathrm{~mm}$
Wall thickness $=300 \mathrm{~mm}$
Main Reinforcément $=3$ Nos $20 \mathrm{~mm} \phi-$ HYSD bar, one of which bent up at L/7.
Vertical Stirrups $=8 \mathrm{~mm} \phi 2$ legged @ $200 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ Anchor bars = 2 Nos $-12 \mathrm{~mm} \phi$
Draw the sectional plan and sectional elevation for the above RCC beam.
9. Draw sectional plan and sectional elevation of a square column with an isolated footing from the following data : $\quad 10+10=20$

Size of column $=300 \times 300 \mathrm{~mm}$
Depth below GL $=1.0$ Metre
Plinth level $=\mathbf{3 0 0} \mathrm{mm}$ above GL
Height of column $=3.0$ metre
Column Reinforcement
Main bar $=4$ Nos, $20 \mathrm{~mm} \phi$
Lateral Ties $=8 \mathrm{~mm} \phi @ 300 \mathrm{c} / \mathrm{c}$
Footing details
Size $=3.0 \times 3.0$ Metre
Thickness at column face $=600 \mathrm{~mm}$
Thickness at end $=300 \mathrm{~mm}$
Base Reinforcement $=12 \mathrm{~mm} \phi$ @ $200 \mathrm{c} / \mathrm{c}$ both ways.
10. Draw sectional plan and sectional elevation of a cantilever R.C.C. slab having an overhang of 1.75 m from the following data :
$10+10=20$
Main Reinforcement $=10 \mathrm{~mm} \phi$ HYSD bars @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Distribution bar $=8 \mathrm{~mm} \phi$ HYSD bars
@ $150 \mathrm{c} / \mathrm{c}$
Thickness of slab at free end $=100 \mathrm{~mm}$
Thickness of slab of fixed end $=150 \mathrm{~mm}$
Wall thickness $=300 \mathrm{~mm}$
Wall bearing $=300 \mathrm{~mm}$
Width of slab $=2500 \mathrm{~mm}$

