BACHELOR OF ARCHITECTURE (B.Arch.)

Term-End Examination

00193

June, 2018

BAR-014: THEORY OF STRUCTURES - II

Time: 3 hours

Maximum Marks: 70

Note: Question no. 1 is compulsory. Answer any four questions from the remaining questions. Use of scientific calculator is permitted.

- 1. Choose the most appropriate answer from the options given in questions (a) to (g) below: $7\times2=14$
 - (a) A propped cantilever has
 - (i) one end fixed and other free
 - (ii) one end fixed and other roller support
 - (iii) both ends fixed
 - (iv) one end hinged and other roller support

- (b) A simple supported beam of length 'L' is subjected to a UDL of intensity 'w' per unit length over its whole length. Bending moment at mid span is
 - (i) $\frac{wL^2}{8}$
 - $(ii) \quad \frac{wL^2}{2}$
 - $(iii) \quad \frac{wL^2}{4}$
 - (iv) wL²
- (c) Beams in a building generally require _____ reinforcement as compared to arches.
 - (i) less
 - (ii) equal
 - (iii) more
 - (iv) None of the above
- (d) In a sloping truss, the member which supports the covering material is called
 - (i) Rafter
 - (ii) Purlin
 - (iii) Batten
 - (iv) Strut
- (e) Maximum slope permissible in any staircase for vertical transportation is

2

- (i) 25°
- (ii) 40°
- (iii) 50°
- (iv) 35°

	(f)	A three-dimensional representation of an arch is	
		(i) Fixed support	
		(ii) Truss	
		(iii) Beam	
		(iv) Dome	
	(g)	A roller support can develop	
		(i) a moment	
		(ii) a horizontal reaction	
		(iii) a vertical reaction	
٠		(iv) None of the above	
2.	(a)	What is a bearing wall system? Discuss	
		load transmission in this system.	7
	(b)	Discuss the precautions to be taken in the	
		construction of domes.	7
3.	(a)	Define determinate structures. Explain the	
		importance of these in structural analysis.	7
	(b)	Discuss briefly structural systems for small	
		buildings.	7
4.	(a)	Discuss various types of construction	
		materials. Explain briefly the advantages of	
		ductile materials.	7
7	(b)	Define prismatic forms. Discuss salient	
	, ,	advantages of these forms.	7
BAF	R-014	3 P.T	.0.

5.	(a)	Discuss the importance of foundations in a
		structure. Explain the objectives of a good
		foundation.

7

(b) Discuss why displacements should be controlled in a general type building.

7

6. (a) Discuss the use of a lintel in general building construction. Explain the forces resisted by lintels.

7

(b) Discuss the advantages of symmetrical layouts of structural systems used in buildings.

7

- 7. Write short notes on any **two** of the following: $2\times 7=14$
 - (a) Use of columns in general building construction.
 - (b) Stress-strain characteristics of mild steel.
 - (c) Triangle law of forces and its application in structural analysis.

500