No. of Printed Pages : 2

BIME-018

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

00453

June, 2018

BIME-018 : COMPUTER AIDED DESIGN

Time : 3 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks.

1. (a)	What are the basic techniques used for generation of graphic image ? Explain with suitable examples.	7
(b)	What is solid modelling ? Discuss any one method of solid modelling.	7
2. (a)	Why is parametric representation of curves better as compared to analytic representation ? Explain.	7
(b)	What are the input devices in a CAD system ? Explain any two with neat sketches.	7
3. (a)	What is visualisation of a model ? Differentiate between random scan display and raster scan display.	7
(b)	With a suitable block diagram, explain the configuration of graphic software in a CAD system.	7
BIME-018	1 רס	

'. I.C

- 4. (a) List the different properties of a Bezier curve. Describe the shapes of Bezier curves for varying control points.
 - (b) Differentiate between Exact fit and Best fit polynomials.
- 5. (a) Why do we need synthetic surfaces ? Discuss.
 - (b) Fit a Bezier curve having the following control points :

 $P_0(1, 1), P_1(3, 6), P_2(5, 7) \text{ and } P_3(7, 4).$ Find out a point at t = 0.4.

- 6. (a) Describe the step-by-step FEM for solving a design problem of a mechanical component.
 - (b) Use Newton-Raphson method to obtain root to three decimal places of the following equation:

 $x^3 + 3x^2 - 3 = 0$

- 7. (a) Explain the features of colour model application in a CAD system. Give suitable examples.
 - (b) Describe the bi-cubic surface method of surface modelling.

BIME-018

2

7

7

7

7

7

7

7

7