No. of Printed Pages : 3

BIME-015

B. Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

00973

June, 2018

BIME-015 : REFRIGERATION AND AIR CONDITIONING

Time : 3 hours

Maximum Marks: 70

Note: Attempt any seven questions. All questions carry equal marks. Use of Steam table, Refrigeration charts, Mollier diagram, Psychrometric chart and Scientific calculator is permitted.

- Define the COP of a refrigerator. Show that the COP of a heat pump is greater than the COP of a refrigerator by unity.
- 2. List the factors which should be taken into consideration while selecting a system of air-conditioning.
- **3.** What are the effects of CFCs on the environment ? How do they affect the Ozone layer ?

1

BIME-015

P.T.O.

10

10

- 4. Explain the absorption refrigeration cycle. How does it differ from a vapour compression cycle ? 10
- 5. Determine the ideal COP of an absorption refrigerating system in which the heating, cooling and refrigeration take place at 197° C, 17° and -3° C respectively.

10

10

10

10

- 6. An air-water vapour mixture enters an adiabatic saturator at 30°C and leaves at 20°C, which is the adiabatic saturation temperature. The pressure remains constant at 100 kPa. Determine the relative humidity and the humidity ratio of the inlet mixture.
- 7. What is specific humidity ? When does it become maximum ? What is degree of saturation ? What are its limiting values ?
- A refrigerating system operates on the reversed Carnot cycle. The higher temperature of the refrigerant in the system is 35°C and the lower temperature is -15°C. The capacity is to be 12 tonnes. Neglect all losses.

Determine :

- (a) Co-efficient of performance
- (b) Heat rejected from the system per hour
- (c) Power required

BIME-015

2

- 9. In a standard vapour compression refrigeration operating between cycle, an evaporator of -10° C and temperature a condenser temperature of 40°C, the enthalpy of the refrigerant, Freon-12, at the end of compression is 220 kJ/kg. Show the cycle diagram on T-s plane. Calculate
 - (a) The COP of the cycle
 - (b) The refrigerating capacity and the compressor power assuming a refrigerant flow rate of 1 kg/min.

You may use the extract of Freon-12 property table given below :

t (°C)p (MPa) $h_f(kJ/kg)$ $h_g(kJ/kg)$ -100.219126.85183.1400.960774.53203.1

10. Define load on an air-conditioner. What are the two main types of loads ? Give examples. Discuss the cooling load on a theatre.

3

10

10

BIME-015

1,000