B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

00193

Term-End Examination June, 2018

BIME-002: THERMAL ENGINEERING - I

Time : 3 h	nours Maximum Marks	Maximum Marks : 70		
Note: Attempt any seven questions. Use of calculator is allowed. Use of steam table is permitted.				
1. (a)	Explain Maxwell relations. What is their significance in thermal engineering?	5		
(b)	What do you understand by Joule-Thomson coefficient? Explain.	5		
2. (a)	In context to a steam turbine, define any two of the following:	5		
•	(i) Stage efficiency			
	(ii) Speed ratio			
	(iii) Blade velocity coefficient			
(b)	Differentiate between an Impulse turbine and a Reaction turbine.	5		
BIMF-002	1 DT	. ~		

3.	3.	(a)	Coal having the following composition by mass is burnt with theoretically correct amount of air: 86% C, 6% H, 5% O, 2% N, 1% S	
			Determine the air-fuel ratio used for combustion of coal.	5
		(b)	Explain enthalpy of combustion and enthalpy of formation.	5
	4.	(a)	Dry saturated steam at 10 bar and 100 m/s enters a nozzle and leaves it with a velocity of 300 m/s at 5 bar. For 16 kg/s of steam mass flow rate, determine heat drop in nozzle and final state of steam leaving the nozzle, assuming rate of heat loss to surroundings is 10 kJ/sec.	5
		(b)	With the help of T-s and h-s diagrams, explain the working of a Rankine cycle.	5
	5.		do you mean by High Pressure Boiler? a neat sketch, explain the working principle	
		of a B	enson Boiler.	10
	6.	(a)	Describe the construction and working of a Ramjet engine.	5
		(b)	Explain the principle of Rocket propulsion.	5
	7.	(a)	Explain the method of regeneration used in the vapour power cycle with a T-s diagram.	5
		(b)	Describe binary vapour cycles.	5
RIN		E-002	2	

- 8. (a) Explain air leakage in a steam condenser. 5
 - (b) How are steam condensers classified? With a neat sketch, describe the working of a surface condenser.

5

- **9.** Write short notes on any two of the following: $2\times 5=10$
 - (a) Carnot Cycle
 - (b) Adiabatic and Isothermal Compressibility
 - (c) Boiler Mountings
 - (d) Indicator Diagram