B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED

DIDロI MANUFACTURING)

Term-End Examination
June, 2018

BME-027 : HEAT AND MASS TRANSFER

Time : 3 hours
Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume suitable data, if any.

1. (a) What is meant by thermal resistance ? Explain the electrical analogy for solving heat transfer problem.
(b) The interior of a refrigerator having inside dimensions of $50 \mathrm{~cm} \times 50 \mathrm{~cm}$ base area and 1 m high is to be maintained at $7^{\circ} \mathrm{C}$. The walls of the refrigerator are constructed of two mild steel sheets 3 mm thick with 5 cm of glass wool insulation between them. If the average heat transfer coefficients at the inner and outer surfaces are $11.61 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and $14.53 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ respectively, estimate the rate at which heat must be removed from the interior to maintain the specified temperature. What is the temperature at the surface of the wall if the outside temperature is $28^{\circ} \mathrm{C}$? The thermal conductivities of mild steel and glass wool are $46.52 \mathrm{~W} / \mathrm{mK}$ and $0.046 \mathrm{~W} / \mathrm{mK}$ respectively. $4+10$
2. (a) Prove that the shape factor of the hemispherical bowl of diameter D with respect to itself is 0.5 .
(b) A 5 cm diameter steel pipe is to be insulated by using two layers, one of asbestos ($k=0.145 \mathrm{~W} / \mathrm{mK}$) and other of magnesia ($k=0.069 \mathrm{~W} / \mathrm{mK}$) each having a thickness of 5 cm . Find the ratio of heat loss when asbestos is inside to that when asbestos is outside. Assume that the temperature drop across the composite insulation remains unchanged.
3. (a) Draw the temperature gradient through a plane wall when the thermal conductivity
(i) remains constant with increase in temperature.
(ii) increases with increase in temperature.
(b) Air at $20^{\circ} \mathrm{C}$ and at atmospheric pressure is flowing over a flat plate at a velocity of $3 \mathrm{~m} / \mathrm{s}$. It the plate is 30 cm wide and at $60^{\circ} \mathrm{C}$, calculate the following quantities at $x=30 \mathrm{~cm}$, from the leading edge : $4+10$
(i) Boundary layer thickness
(ii) Local skin friction co-efficient
(iii) Average skin friction co-efficient
(iv) Local shear stress, and
(v) Average shear stress.

The properties of air at mean temperature of $40^{\circ} \mathrm{C}$ are

$$
\begin{aligned}
& \rho=1 \cdot 128 \mathrm{~kg} / \mathrm{m}^{3}, \\
& \mu=19.12 \times 10^{-6} \mathrm{~Pa} . \mathrm{sec} \\
& \mathrm{C}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} \\
& \mathrm{k}=2.76 \times 10^{-2} \mathrm{~W} / \mathrm{mK}
\end{aligned}
$$

4. (a) Derive an expression for temperature distribution in a slab of thickness ' b ' when its two faces are at temperatures t_{1} and t_{2}, the thermal conductivity varies linearly with temperature according to

$$
k=k_{0}(1+\alpha t)
$$

where ' α ' is a constant.
Assume one-dimensional steady state heat condition with no heat generation.
(b) The Sun emits maximum radiation at a wavelength of $\lambda=0.52$ micron. Assuming the Sun as a black body, find the surface temperature of the Sun and emissive power at that temperature.
5. (a) Define Reynolds number, Nusselt number, Prandtl number, and Stanton number. Explain their importance in convective heat transfer.
(b) In a heat exchanger, water flows through a long 2.2 cm ID copper tube at a bulk velocity of $2 \mathrm{~m} / \mathrm{sec}$ and is heated by steam condensing at $150^{\circ} \mathrm{C}$ on the outside of the tube. The water enters at $15^{\circ} \mathrm{C}$ and leaves at $60^{\circ} \mathrm{C}$. Find the heat transfer co-efficient for water.
6. (a) Estimate the diffusion rate of water from the bottom of a test tube 1.5 cm in diameter and 15 cm long into dry atmosphere at $25^{\circ} \mathrm{C}$. Take diffusivity of water in air as $0.256 \mathrm{~cm}^{2} / \mathrm{sec}$ and saturation pressure of water at $25^{\circ} \mathrm{C}=0.0316 \mathrm{bar}$.
(b) A small body at $47^{\circ} \mathrm{C}$ is placed in a large furnace whose walls are maintained at 1200 K . The total absorptivity of the small body varies with temperature of the incident radiation as follows :

$\mathrm{T}(\mathrm{K})$	320 K	500 K	1200 K
α	0.78	0.67	0.55

Find the rate of absorption and rate of emission by a small body.
7. (a) What is convective mass transfer co-efficient and what are its units?
(b) Oxygen is diffusing through carbon monoxide with carbon monoxide non-diffusing. The total pressure is 1 atmosphere and temperature is $0^{\circ} \mathrm{C}$. The partial pressure of oxygen at two planes 0.2 cm apart is 100 mm and 50 mm of Hg respectively. The diffusivity of mixture is $1.85 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$. Calculate the rate of diffusion of oxygen in $\mathrm{kg} \mathrm{mole} / \mathrm{m}^{2} \mathrm{sec}$ through each square cm of two planes. 7+7
8. (a) Define Schmidt number, Sherwood number and Lewis number. What is the physical significance of each ?
(b) Discuss the classification of heat exchangers. Explain the shell and tube type heat exchanger. Why are baffles used? $7+7$

